Yang Zhen, Pou-Prom Chloé, Jones Ashley, Banning Michaelia, Dai David, Mamdani Muhammad, Oh Jiwon, Antoniou Tony
Data Science and Advanced Analytics, Unity Health Toronto, Toronto, ON, Canada.
Division of Neurology, Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada.
JMIR Med Inform. 2022 Jan 12;10(1):e25157. doi: 10.2196/25157.
The Expanded Disability Status Scale (EDSS) score is a widely used measure to monitor disability progression in people with multiple sclerosis (MS). However, extracting and deriving the EDSS score from unstructured electronic health records can be time-consuming.
We aimed to compare rule-based and deep learning natural language processing algorithms for detecting and predicting the total EDSS score and EDSS functional system subscores from the electronic health records of patients with MS.
We studied 17,452 electronic health records of 4906 MS patients followed at one of Canada's largest MS clinics between June 2015 and July 2019. We randomly divided the records into training (80%) and test (20%) data sets, and compared the performance characteristics of 3 natural language processing models. First, we applied a rule-based approach, extracting the EDSS score from sentences containing the keyword "EDSS." Next, we trained a convolutional neural network (CNN) model to predict the 19 half-step increments of the EDSS score. Finally, we used a combined rule-based-CNN model. For each approach, we determined the accuracy, precision, recall, and F-score compared with the reference standard, which was manually labeled EDSS scores in the clinic database.
Overall, the combined keyword-CNN model demonstrated the best performance, with accuracy, precision, recall, and an F-score of 0.90, 0.83, 0.83, and 0.83 respectively. Respective figures for the rule-based and CNN models individually were 0.57, 0.91, 0.65, and 0.70, and 0.86, 0.70, 0.70, and 0.70. Because of missing data, the model performance for EDSS subscores was lower than that for the total EDSS score. Performance improved when considering notes with known values of the EDSS subscores.
A combined keyword-CNN natural language processing model can extract and accurately predict EDSS scores from patient records. This approach can be automated for efficient information extraction in clinical and research settings.
扩展残疾状态量表(EDSS)评分是监测多发性硬化症(MS)患者残疾进展的常用指标。然而,从非结构化电子健康记录中提取和推导EDSS评分可能很耗时。
我们旨在比较基于规则和深度学习的自然语言处理算法,以从MS患者的电子健康记录中检测和预测总EDSS评分及EDSS功能系统子评分。
我们研究了2015年6月至2019年7月在加拿大最大的MS诊所之一随访的4906例MS患者的17452份电子健康记录。我们将记录随机分为训练(80%)和测试(20%)数据集,并比较了3种自然语言处理模型的性能特征。首先,我们应用基于规则的方法,从包含关键词“EDSS”的句子中提取EDSS评分。接下来,我们训练了一个卷积神经网络(CNN)模型来预测EDSS评分的19个半步增量。最后,我们使用了基于规则的CNN组合模型。对于每种方法,我们与参考标准(即临床数据库中手动标注的EDSS评分)相比,确定了准确率、精确率、召回率和F值。
总体而言,关键词-CNN组合模型表现最佳,准确率、精确率、召回率和F值分别为0.90、0.83、0.83和0.83。基于规则的模型和CNN模型各自的相应数值分别为0.57、0.91、0.65和0.70,以及0.86、0.70、0.70和0.70。由于数据缺失,EDSS子评分的模型性能低于总EDSS评分。考虑具有已知EDSS子评分值的记录时,性能有所提高。
关键词-CNN自然语言处理组合模型可以从患者记录中提取并准确预测EDSS评分。这种方法可以自动化,以便在临床和研究环境中进行高效的信息提取。