Suppr超能文献

加拿大城市环境健康研究联合会——构建全国环境暴露数据平台的方案,以综合分析城市形态与健康。

The Canadian Urban Environmental Health Research Consortium - a protocol for building a national environmental exposure data platform for integrated analyses of urban form and health.

机构信息

Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada.

Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.

出版信息

BMC Public Health. 2018 Jan 8;18(1):114. doi: 10.1186/s12889-017-5001-5.

Abstract

BACKGROUND

Multiple external environmental exposures related to residential location and urban form including, air pollutants, noise, greenness, and walkability have been linked to health impacts or benefits. The Canadian Urban Environmental Health Research Consortium (CANUE) was established to facilitate the linkage of extensive geospatial exposure data to existing Canadian cohorts and administrative health data holdings. We hypothesize that this linkage will enable investigators to test a variety of their own hypotheses related to the interdependent associations of built environment features with diverse health outcomes encompassed by the cohorts and administrative data.

METHODS

We developed a protocol for compiling measures of built environment features that quantify exposure; vary spatially on the urban and suburban scale; and can be modified through changes in policy or individual behaviour to benefit health. These measures fall into six domains: air quality, noise, greenness, weather/climate, and transportation and neighbourhood factors; and will be indexed to six-digit postal codes to facilitate merging with health databases. Initial efforts focus on existing data and include estimates of air pollutants, greenness, temperature extremes, and neighbourhood walkability and socioeconomic characteristics. Key gaps will be addressed for noise exposure, with a new national model being developed, and for transportation-related exposures, with detailed estimates of truck volumes and diesel emissions now underway in selected cities. Improvements to existing exposure estimates are planned, primarily by increasing temporal and/or spatial resolution given new satellite-based sensors and more detailed national air quality modelling. Novel metrics are also planned for walkability and food environments, green space access and function and life-long climate-related exposures based on local climate zones. Critical challenges exist, for example, the quantity and quality of input data to many of the models and metrics has changed over time, making it difficult to develop and validate historical exposures.

DISCUSSION

CANUE represents a unique effort to coordinate and leverage substantial research investments and will enable a more focused effort on filling gaps in exposure information, improving the range of exposures quantified, their precision and mechanistic relevance to health. Epidemiological studies may be better able to explore the common theme of urban form and health in an integrated manner, ultimately contributing new knowledge informing policies that enhance healthy urban living.

摘要

背景

与居住地点和城市形态相关的多种外部环境暴露因素,包括空气污染物、噪声、绿化和可步行性,已与健康影响或益处相关联。加拿大城市环境健康研究联合会(CANUE)的成立旨在促进将广泛的地理空间暴露数据与现有的加拿大队列和行政健康数据联系起来。我们假设,这种联系将使研究人员能够测试他们自己的各种假设,这些假设涉及与不同健康结果相关的建筑环境特征的相互依存关系,这些健康结果被队列和行政数据所涵盖。

方法

我们制定了一个编制建筑环境特征衡量标准的方案,这些标准可以量化暴露量;在城市和郊区尺度上具有空间变化;并可以通过政策或个人行为的改变来改善健康状况。这些措施分为六个领域:空气质量、噪声、绿化、天气/气候以及交通和邻里因素;并将以六位邮政编码为索引,以方便与健康数据库合并。最初的工作重点是现有数据,包括空气污染物、绿化、极端温度以及邻里可步行性和社会经济特征的估计。将针对噪声暴露,开发新的全国模型,并针对交通相关暴露,在选定城市开展卡车数量和柴油排放的详细估计,来解决关键差距。计划改进现有的暴露估计,主要是通过增加新的基于卫星的传感器和更详细的国家空气质量模型的时间和/或空间分辨率。还计划为可步行性和食品环境、绿色空间可达性和功能以及基于当地气候带的终身气候相关暴露制定新的指标。存在一些关键挑战,例如,许多模型和指标的输入数据的数量和质量随着时间的推移而发生了变化,这使得开发和验证历史暴露变得困难。

讨论

CANUE 代表了协调和利用大量研究投资的独特努力,将使填补暴露信息的差距、提高量化暴露的范围、提高其精度以及与健康的机制相关性的工作更加集中。流行病学研究可能能够以更综合的方式探索城市形态与健康的共同主题,最终为增强健康城市生活的政策提供新知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f39/5759244/37f8b48443a5/12889_2017_5001_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验