International School for Advanced Studies, Trieste, 34136, Italy.
INSERM U1006, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, 13009, France.
Sci Rep. 2018 Jan 8;8(1):45. doi: 10.1038/s41598-017-18499-0.
Cyclic nucleotide-gated (CNG) channels mediate transduction in several sensory neurons. These channels use the free energy of CNs' binding to open the pore, a process referred to as gating. CNG channels belong to the superfamily of voltage-gated channels, where the motion of the α-helix S6 controls gating in most of its members. To date, only the open, cGMP-bound, structure of a CNG channel has been determined at atomic resolution, which is inadequate to determine the molecular events underlying gating. By using electrophysiology, site-directed mutagenesis, chemical modification, and Single Molecule Force Spectroscopy, we demonstrate that opening of CNGA1 channels is initiated by the formation of salt bridges between residues in the C-linker and S5 helix. These events trigger conformational changes of the α-helix S5, transmitted to the P-helix and leading to channel opening. Therefore, the superfamily of voltage-gated channels shares a similar molecular architecture but has evolved divergent gating mechanisms.
环核苷酸门控 (CNG) 通道介导几种感觉神经元的转导。这些通道利用 CNs 结合打开孔的自由能,这一过程称为门控。CNG 通道属于电压门控通道超家族,其中 α-螺旋 S6 的运动控制其大多数成员的门控。迄今为止,只有 CNG 通道的开放、cGMP 结合的结构已在原子分辨率下确定,这不足以确定门控背后的分子事件。通过使用电生理学、定点突变、化学修饰和单分子力谱学,我们证明 CNGA1 通道的打开是由 C 链接器和 S5 螺旋中的残基之间形成盐桥引发的。这些事件引发 α-螺旋 S5 的构象变化,传递到 P 螺旋并导致通道打开。因此,电压门控通道超家族具有相似的分子结构,但已进化出不同的门控机制。