Suppr超能文献

用于定量成像的发射断层扫描系统校准中的不确定性分析。

Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging.

作者信息

D'Arienzo Marco, Cox Maurice

机构信息

ENEA, National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123 Rome, Italy.

National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.

出版信息

Comput Math Methods Med. 2017;2017:9830386. doi: 10.1155/2017/9830386. Epub 2017 Oct 12.

Abstract

It is generally acknowledged that calibration of the imaging system (be it a SPECT or a PET scanner) is one of the critical components associated with in vivo activity quantification in nuclear medicine. The system calibration is generally performed through the acquisition of a source with a known amount of radioactivity. The decay-corrected calibration factor is the "output" quantity in a measurement model for the process. This quantity is a function of a number of "input" variables, including total counts in the volume of interest (VOI), radionuclide activity concentration, source volume, acquisition duration, radionuclide half-life, and calibration time of the radionuclide. Uncertainties in the input variables propagate through the calculation to the "combined" uncertainty in the output quantity. In the present study, using the general formula given in the GUM (Guide to the Expression of Uncertainty in Measurement) for aggregating uncertainty components, we derive a practical relation to assess the combined standard uncertainty for the calibration factor of an emission tomography system. At a time of increasing need for accuracy in quantification studies, the proposed approach has the potential to be easily implemented in clinical practice.

摘要

人们普遍认为,成像系统(无论是单光子发射计算机断层扫描(SPECT)还是正电子发射断层扫描(PET)扫描仪)的校准是核医学中与体内活性定量相关的关键组成部分之一。系统校准通常通过采集具有已知放射性量的源来进行。衰变校正后的校准因子是该过程测量模型中的“输出”量。这个量是许多“输入”变量的函数,包括感兴趣体积(VOI)中的总计数、放射性核素活度浓度、源体积、采集持续时间、放射性核素半衰期以及放射性核素的校准时间。输入变量的不确定性通过计算传播到输出量的“合成”不确定性。在本研究中,使用《测量不确定度表示指南》(GUM)中给出的用于汇总不确定度分量的通用公式,我们推导了一个实用关系式,以评估发射断层扫描系统校准因子的合成标准不确定度。在定量研究对准确性的需求日益增加的时代,所提出的方法有可能在临床实践中轻松实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2f2/5660760/8c6408a2a832/CMMM2017-9830386.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验