Suppr超能文献

基于拓扑的多任务深度神经网络的定量毒性预测。

Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks.

机构信息

Department of Mathematics, ‡Department of Electrical and Computer Engineering, and ¶Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.

出版信息

J Chem Inf Model. 2018 Feb 26;58(2):520-531. doi: 10.1021/acs.jcim.7b00558. Epub 2018 Jan 31.

Abstract

The understanding of toxicity is of paramount importance to human health and environmental protection. Quantitative toxicity analysis has become a new standard in the field. This work introduces element specific persistent homology (ESPH), an algebraic topology approach, for quantitative toxicity prediction. ESPH retains crucial chemical information during the topological abstraction of geometric complexity and provides a representation of small molecules that cannot be obtained by any other method. To investigate the representability and predictive power of ESPH for small molecules, ancillary descriptors have also been developed based on physical models. Topological and physical descriptors are paired with advanced machine learning algorithms, such as the deep neural network (DNN), random forest (RF), and gradient boosting decision tree (GBDT), to facilitate their applications to quantitative toxicity predictions. A topology based multitask strategy is proposed to take the advantage of the availability of large data sets while dealing with small data sets. Four benchmark toxicity data sets that involve quantitative measurements are used to validate the proposed approaches. Extensive numerical studies indicate that the proposed topological learning methods are able to outperform the state-of-the-art methods in the literature for quantitative toxicity analysis. Our online server for computing element-specific topological descriptors (ESTDs) is available at http://weilab.math.msu.edu/TopTox/ .

摘要

毒性的理解对人类健康和环境保护至关重要。定量毒性分析已成为该领域的新标准。本工作引入元素特定持久同调(ESPH),这是一种代数拓扑方法,用于定量毒性预测。ESPH 在几何复杂性的拓扑抽象过程中保留了关键的化学信息,并为小分子提供了任何其他方法都无法获得的表示。为了研究 ESPH 对小分子的表示能力和预测能力,还基于物理模型开发了辅助描述符。拓扑和物理描述符与先进的机器学习算法(如深度神经网络(DNN)、随机森林(RF)和梯度提升决策树(GBDT))配对,以促进它们在定量毒性预测中的应用。提出了一种基于拓扑的多任务策略,以充分利用大数据集的可用性,同时处理小数据集。使用四个涉及定量测量的基准毒性数据集来验证所提出的方法。广泛的数值研究表明,所提出的拓扑学习方法在定量毒性分析方面能够优于文献中的最新方法。我们的计算元素特定拓扑描述符(ESTD)的在线服务器可在 http://weilab.math.msu.edu/TopTox/ 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验