VA Portland Health Care System, Portland, OR.
Department of Neurology, Oregon Health and Science University, Portland, OR.
Sleep. 2018 Mar 1;41(3). doi: 10.1093/sleep/zsx212.
In previous work, dietary branched-chain amino acid (BCAA) supplementation, precursors to de novo glutamate and γ-aminobutyric acid (GABA) synthesis, restored impaired sleep-wake regulation and orexin neuronal activity following traumatic brain injury (TBI) in mice. TBI was speculated to reduce orexin neuronal activity through decreased regional excitatory (glutamate) and/or increased inhibitory (GABA) input. Therefore, we hypothesized that TBI would decrease synaptic glutamate and/or increase synaptic GABA in nerve terminals contacting orexin neurons, and BCAA supplementation would restore TBI-induced changes in synaptic glutamate and/or GABA.
Brain tissue was processed for orexin pre-embed diaminobenzidine labeling and glutamate or GABA postembed immunogold labeling. The density of glutamate and GABA immunogold within presynaptic nerve terminals contacting orexin-positive lateral hypothalamic neurons was quantified using electron microscopy in three groups of mice (n = 8 per group): Sham/noninjured controls, TBI without BCAA supplementation, and TBI with BCAA supplementation (given for 5 days, 48 hr post-TBI). Glutamate and GABA were also quantified within the cortical penumbral region (layer VIb) adjacent to the TBI lesion.
In the hypothalamus and cortex, TBI decreased relative glutamate density in presynaptic terminals making axodendritic contacts. However, BCAA supplementation only restored relative glutamate density within presynaptic terminals contacting orexin-positive hypothalamic neurons. BCAA supplementation did not change relative glutamate density in presynaptic terminals making axosomatic contacts, or relative GABA density in presynaptic terminals making axosomatic or axodendritic contacts, within either the hypothalamus or cortex.
These results suggest TBI compromises orexin neuron function via decreased glutamate density and highlight BCAA supplementation as a potential therapy to restore glutamate density to orexin neurons.
在之前的研究中,膳食支链氨基酸(BCAA)补充物作为谷氨酸和γ-氨基丁酸(GABA)合成的前体,可恢复创伤性脑损伤(TBI)后小鼠的睡眠-觉醒调节和食欲素神经元活动受损。推测 TBI 通过减少区域兴奋性(谷氨酸)和/或增加抑制性(GABA)输入来降低食欲素神经元活性。因此,我们假设 TBI 会减少与食欲素神经元接触的神经末梢中的突触谷氨酸和/或增加突触 GABA,而 BCAA 补充物会恢复 TBI 引起的突触谷氨酸和/或 GABA 的变化。
用食欲素预包埋二氨基联苯胺标记和谷氨酸或 GABA 后包埋免疫金标记处理脑组织。使用电子显微镜在三组小鼠(每组 8 只)中定量测定与食欲素阳性下丘脑外侧神经元接触的突触前神经末梢中的谷氨酸和 GABA 免疫金密度:假手术/未受伤对照、未接受 BCAA 补充的 TBI 和接受 BCAA 补充的 TBI(伤后 5 天,48 小时给予)。还在 TBI 病变附近的皮质半影区(VIb 层)定量测定谷氨酸和 GABA。
在下丘脑和皮质中,TBI 降低了与食欲素阳性下丘脑神经元接触的突触前末梢中的相对谷氨酸密度。然而,BCAA 补充仅恢复了与食欲素阳性下丘脑神经元接触的突触前末梢中的相对谷氨酸密度。BCAA 补充物并未改变与食欲素阳性下丘脑神经元接触的突触前末梢中形成轴突-树突接触的相对谷氨酸密度,也未改变与轴突-体接触或与轴突-树突接触的突触前末梢中相对 GABA 密度。
这些结果表明,TBI 通过降低谷氨酸密度来损害食欲素神经元功能,并强调了 BCAA 补充作为一种潜在的治疗方法,可将谷氨酸密度恢复至食欲素神经元。