Suppr超能文献

社区居住的老年人认知异质亚组的识别:爱因斯坦老龄化研究的潜在类别分析。

Identification of Heterogeneous Cognitive Subgroups in Community-Dwelling Older Adults: A Latent Class Analysis of the Einstein Aging Study.

机构信息

Saul B. Korey Department of Neurology,Albert Einstein College of Medicine,Bronx,New York.

4The University of Edinburgh,Scotland.

出版信息

J Int Neuropsychol Soc. 2018 May;24(5):511-523. doi: 10.1017/S135561771700128X. Epub 2018 Jan 10.

Abstract

OBJECTIVES

The aim of this study was to identify natural subgroups of older adults based on cognitive performance, and to establish each subgroup's characteristics based on demographic factors, physical function, psychosocial well-being, and comorbidity.

METHODS

We applied latent class (LC) modeling to identify subgroups in baseline assessments of 1345 Einstein Aging Study (EAS) participants free of dementia. The EAS is a community-dwelling cohort study of 70+ year-old adults living in the Bronx, NY. We used 10 neurocognitive tests and 3 covariates (age, sex, education) to identify latent subgroups. We used goodness-of-fit statistics to identify the optimal class solution and assess model adequacy. We also validated our model using two-fold split-half cross-validation.

RESULTS

The sample had a mean age of 78.0 (SD=5.4) and a mean of 13.6 years of education (SD=3.5). A 9-class solution based on cognitive performance at baseline was the best-fitting model. We characterized the 9 identified classes as (i) disadvantaged, (ii) poor language, (iii) poor episodic memory and fluency, (iv) poor processing speed and executive function, (v) low average, (vi) high average, (vii) average, (viii) poor executive and poor working memory, (ix) elite. The cross validation indicated stable class assignment with the exception of the average and high average classes.

CONCLUSIONS

LC modeling in a community sample of older adults revealed 9 cognitive subgroups. Assignment of subgroups was reliable and associated with external validators. Future work will test the predictive validity of these groups for outcomes such as Alzheimer's disease, vascular dementia and death, as well as markers of biological pathways that contribute to cognitive decline. (JINS, 2018, 24, 511-523).

摘要

目的

本研究旨在根据认知表现确定老年人的自然亚组,并根据人口统计学因素、身体功能、心理社会健康和合并症确定每个亚组的特征。

方法

我们应用潜在类别(LC)建模来确定 1345 名爱因斯坦老龄化研究(EAS)参与者的基线评估中没有痴呆的亚组。EAS 是一项针对居住在纽约布朗克斯的 70 岁以上成年人的社区居住队列研究。我们使用 10 项神经认知测试和 3 个协变量(年龄、性别、教育)来识别潜在亚组。我们使用拟合优度统计来确定最佳类别解决方案并评估模型充分性。我们还使用两折半交叉验证来验证我们的模型。

结果

该样本的平均年龄为 78.0(SD=5.4),平均受教育年限为 13.6 年(SD=3.5)。基于基线认知表现的 9 类解决方案是最合适的模型。我们将 9 个确定的亚组描述为:(i)处于不利地位,(ii)语言能力差,(iii)情景记忆和流畅性差,(iv)处理速度和执行功能差,(v)平均水平低,(vi)平均水平高,(vii)平均水平,(viii)执行功能和工作记忆差,(ix)精英。交叉验证表明,除了平均水平和高平均水平类别外,亚组的分配是稳定的。

结论

在老年人的社区样本中,LC 建模揭示了 9 个认知亚组。亚组的分配是可靠的,并与外部验证器相关。未来的工作将测试这些亚组对阿尔茨海默病、血管性痴呆和死亡等结果以及导致认知能力下降的生物途径标志物的预测有效性。(JINS,2018,24,511-523)。

相似文献

引用本文的文献

1
Multimorbidity patterns in dementia and mild cognitive impairment.痴呆症和轻度认知障碍中的多重疾病模式。
Front Psychiatry. 2024 Nov 7;15:1432848. doi: 10.3389/fpsyt.2024.1432848. eCollection 2024.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验