Suppr超能文献

LncRNA 和 mRNA 整合网络重建揭示食管鳞癌中的新型关键调控因子。

LncRNA and mRNA integration network reconstruction reveals novel key regulators in esophageal squamous-cell carcinoma.

机构信息

Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

Food Hygiene and Public Health Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.

出版信息

Genomics. 2019 Jan;111(1):76-89. doi: 10.1016/j.ygeno.2018.01.003. Epub 2018 Jan 6.

Abstract

Many experimental and computational studies have identified key protein coding genes in initiation and progression of esophageal squamous cell carcinoma (ESCC). However, the number of researches that tried to reveal the role of long non-coding RNAs (lncRNAs) in ESCC has been limited. LncRNAs are one of the important regulators of cancers which are transcribed dominantly in the genome and in various conditions. The main goal of this study was to use a systems biology approach to predict novel lncRNAs as well as protein coding genes associated with ESCC and assess their prognostic values. By using microarray expression data for mRNAs and lncRNAs from a large number of ESCC patients, we utilized "Weighted Gene Co-expression Network Analysis" (WGCNA) method to make a big coding-non-coding gene co-expression network, and discovered important functional modules. Gene set enrichment and pathway analysis revealed major biological processes and pathways involved in these modules. After selecting some protein coding genes involved in biological processes and pathways related to cancer, we used "LncTar", a computational tool to predict potential interactions between these genes and lncRNAs. By combining interaction results with Pearson correlations, we introduced some novel lncRNAs with putative key regulatory roles in the network. Survival analysis with Kaplan-Meier estimator and Log-rank test statistic confirmed that most of the introduced genes are associated with poor prognosis in ESCC. Overall, our study reveals novel protein coding genes and lncRNAs associated with ESCC, along with their predicted interactions. Based on the promising results of survival analysis, these genes can be used as good estimators of patients' survival, or even can be analyzed further as new potential signatures or targets for the therapy of ESCC disease.

摘要

许多实验和计算研究已经确定了食管鳞状细胞癌(ESCC)发生和进展中的关键蛋白编码基因。然而,试图揭示长非编码 RNA(lncRNA)在 ESCC 中作用的研究数量有限。lncRNA 是癌症的重要调控因子之一,它们在基因组中大量转录,并在各种条件下转录。本研究的主要目的是使用系统生物学方法来预测与 ESCC 相关的新的 lncRNA 和蛋白编码基因,并评估它们的预后价值。通过使用大量 ESCC 患者的 mRNA 和 lncRNA 的微阵列表达数据,我们利用“加权基因共表达网络分析”(WGCNA)方法构建了一个大的编码-非编码基因共表达网络,并发现了重要的功能模块。基因集富集和通路分析揭示了这些模块中涉及的主要生物学过程和通路。在选择了一些与癌症相关的生物学过程和通路相关的蛋白编码基因后,我们使用“LncTar”,一种计算工具来预测这些基因与 lncRNA 之间的潜在相互作用。通过将相互作用结果与 Pearson 相关性相结合,我们引入了一些在网络中具有潜在关键调节作用的新 lncRNA。Kaplan-Meier 估计器和 Log-rank 检验统计的生存分析证实,引入的大多数基因与 ESCC 的预后不良相关。总体而言,我们的研究揭示了与 ESCC 相关的新的蛋白编码基因和 lncRNA 及其预测的相互作用。基于生存分析的有希望的结果,这些基因可以用作患者生存的良好估计器,甚至可以进一步分析作为 ESCC 疾病治疗的新潜在标志物或靶标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验