Suppr超能文献

从时间序列单细胞表达数据中重建分化网络及其调控。

Reconstructing differentiation networks and their regulation from time series single-cell expression data.

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.

出版信息

Genome Res. 2018 Mar 1;28(3):383-395. doi: 10.1101/gr.225979.117.

Abstract

Generating detailed and accurate organogenesis models using single-cell RNA-seq data remains a major challenge. Current methods have relied primarily on the assumption that descendant cells are similar to their parents in terms of gene expression levels. These assumptions do not always hold for in vivo studies, which often include infrequently sampled, unsynchronized, and diverse cell populations. Thus, additional information may be needed to determine the correct ordering and branching of progenitor cells and the set of transcription factors (TFs) that are active during advancing stages of organogenesis. To enable such modeling, we have developed a method that learns a probabilistic model that integrates expression similarity with regulatory information to reconstruct the dynamic developmental cell trajectories. When applied to mouse lung developmental data, the method accurately distinguished different cell types and lineages. Existing and new experimental data validated the ability of the method to identify key regulators of cell fate.

摘要

使用单细胞 RNA 测序数据生成详细准确的器官发生模型仍然是一个主要挑战。目前的方法主要依赖于这样的假设,即后代细胞在基因表达水平上与其亲本相似。这些假设并不总是适用于体内研究,因为体内研究通常包括采样频率较低、不同步和多样化的细胞群体。因此,可能需要额外的信息来确定祖细胞的正确排序和分支以及在器官发生的推进阶段活跃的转录因子 (TF)。为了实现这种建模,我们开发了一种方法,该方法学习了一种概率模型,该模型将表达相似性与调控信息相结合,以重建动态发育细胞轨迹。当应用于小鼠肺发育数据时,该方法能够准确地区分不同的细胞类型和谱系。现有的和新的实验数据验证了该方法识别细胞命运关键调节剂的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de3d/5848617/a7b447a2471f/383_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验