Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.
Cell Syst. 2024 May 15;15(5):462-474.e5. doi: 10.1016/j.cels.2024.04.005.
Single-cell expression dynamics, from differentiation trajectories or RNA velocity, have the potential to reveal causal links between transcription factors (TFs) and their target genes in gene regulatory networks (GRNs). However, existing methods either overlook these expression dynamics or necessitate that cells be ordered along a linear pseudotemporal axis, which is incompatible with branching trajectories. We introduce Velorama, an approach to causal GRN inference that represents single-cell differentiation dynamics as a directed acyclic graph of cells, constructed from pseudotime or RNA velocity measurements. Additionally, Velorama enables the estimation of the speed at which TFs influence target genes. Applying Velorama, we uncover evidence that the speed of a TF's interactions is tied to its regulatory function. For human corticogenesis, we find that slow TFs are linked to gliomas, while fast TFs are associated with neuropsychiatric diseases. We expect Velorama to become a critical part of the RNA velocity toolkit for investigating the causal drivers of differentiation and disease.
单细胞表达动态,无论是从分化轨迹还是 RNA 速度来看,都有可能揭示基因调控网络 (GRN) 中转录因子 (TFs)与其靶基因之间的因果关系。然而,现有的方法要么忽略了这些表达动态,要么需要沿着线性拟时轴对细胞进行排序,这与分支轨迹不兼容。我们引入了 Velorama,这是一种因果 GRN 推断方法,它将单细胞分化动态表示为从拟时或 RNA 速度测量中构建的细胞有向无环图。此外,Velorama 还可以估计 TF 对靶基因的影响速度。应用 Velorama,我们发现 TF 相互作用的速度与其调节功能有关。对于人类皮质发生,我们发现慢 TF 与神经胶质瘤有关,而快 TF 与神经精神疾病有关。我们预计 Velorama 将成为研究分化和疾病的因果驱动因素的 RNA 速度工具包的重要组成部分。