Suppr超能文献

基于深度特征学习的皮肤镜图像皮肤血管检测与定位的计算机辅助决策支持系统。

A Computer-Aided Decision Support System for Detection and Localization of Cutaneous Vasculature in Dermoscopy Images Via Deep Feature Learning.

机构信息

Biomedical Engineering Program, University of British Columbia, Vancouver, BC, Canada.

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

出版信息

J Med Syst. 2018 Jan 9;42(2):33. doi: 10.1007/s10916-017-0885-2.

Abstract

Vascular structures of skin are important biomarkers in diagnosis and assessment of cutaneous conditions. Presence and distribution of lesional vessels are associated with specific abnormalities. Therefore, detection and localization of cutaneous vessels provide critical information towards diagnosis and stage status of diseases. However, cutaneous vessels are highly variable in shape, size, color and architecture, which complicate the detection task. Considering the large variability of these structures, conventional vessel detection techniques lack the generalizability to detect different vessel types and require separate algorithms to be designed for each type. Furthermore, such techniques are highly dependent on precise hand-crafted features which are time-consuming and computationally inefficient. As a solution, we propose a data-driven feature learning framework based on stacked sparse auto-encoders (SSAE) for comprehensive detection of cutaneous vessels. Each training image is divided into small patches of either containing or non-containing vasculature. A multilayer SSAE is designed to learn hidden features of the data in hierarchical layers in an unsupervised manner. The high-level learned features are subsequently fed into a classifier which categorizes each patch into absence or presence of vasculature and localizes vessels within the lesion. Over a test set of 3095 patches derived from 200 images, the proposed framework demonstrated superior performance of 95.4% detection accuracy over a variety of vessel patterns; outperforming other techniques by achieving the highest positive predictive value of 94.7%. The proposed Computer-Aided Diagnosis (CAD) framework can serve as a decision support system assisting dermatologists for more accurate diagnosis, especially in teledermatology applications in remote areas.

摘要

皮肤的血管结构是诊断和评估皮肤状况的重要生物标志物。病变血管的存在和分布与特定的异常有关。因此,检测和定位皮肤血管提供了对诊断和疾病阶段状态的关键信息。然而,皮肤血管在形状、大小、颜色和结构上具有高度的可变性,这使得检测任务变得复杂。考虑到这些结构的巨大可变性,传统的血管检测技术缺乏通用性,无法检测不同类型的血管,需要为每种类型设计单独的算法。此外,这些技术高度依赖于精确的手工制作的特征,这既耗时又计算效率低下。作为解决方案,我们提出了一种基于堆叠稀疏自动编码器(SSAE)的数据驱动特征学习框架,用于全面检测皮肤血管。每个训练图像被分为包含或不包含脉管系统的小斑块。设计了一个多层 SSAE 以在无监督的方式在分层层中学习数据的隐藏特征。然后将高级学习特征输入到分类器中,该分类器将每个斑块分为存在或不存在血管,并在病变内定位血管。在 200 张图像衍生的 3095 个斑块的测试集上,所提出的框架在各种血管模式下表现出 95.4%的检测精度,优于其他技术,实现了 94.7%的最高阳性预测值。所提出的计算机辅助诊断(CAD)框架可以作为一个决策支持系统,帮助皮肤科医生进行更准确的诊断,特别是在远程地区的远程皮肤病学应用中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验