Suppr超能文献

迈向水性太阳能电池:在碳氮化物中直接电化学储存太阳能。

Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.

机构信息

Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany.

Ecole Polytechnique Fédérale de Lausanne, Station 12, 1015, Lausanne, Switzerland.

出版信息

Adv Mater. 2018 Mar;30(9). doi: 10.1002/adma.201705477. Epub 2018 Jan 10.

Abstract

Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation.

摘要

石墨相氮化碳作为一种丰富的聚合物材料,已被广泛应用于太阳能转化领域。在此,我们报道了一种二维氰胺功能化聚庚嗪酰亚胺(NCN-PHI),它首次在单一材料中实现了两种关键能量转换功能的协同耦合:光捕获和电能存储。在水相电解质中的光电化学测量揭示了这种“太阳能电池”材料的潜在机制:NCN-PHI 的电荷存储基于氮化碳骨架的光还原,而电荷补偿则通过 NCN-PHI 层内和溶液界面处的碱金属离子吸附来实现。因此,光还原后的氮化碳可以被描述为一种工作在赝电容模式下的电池阳极,它可以将光诱导的电荷以长寿命的“捕获”电子的形式存储数小时。重要的是,由于氮化碳析氢的固有过电势较高,该过程的电位窗口不受水还原反应的限制,这为水相电池的新应用提供了可能。因此,通过单组分光充电电池阳极按需进行光诱导电能存储和释放的可行性得到了验证,这为克服太阳能辐射间歇性提供了一种可持续的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验