Suppr超能文献

氮化碳光充电程度控制光化学级联过程中氢转移的能量学。

Extent of carbon nitride photocharging controls energetics of hydrogen transfer in photochemical cascade processes.

作者信息

Savateev Oleksandr, Nolkemper Karlo, Kühne Thomas D, Shvalagin Vitaliy, Markushyna Yevheniia, Antonietti Markus

机构信息

Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

出版信息

Nat Commun. 2023 Nov 24;14(1):7684. doi: 10.1038/s41467-023-43328-6.

Abstract

Graphitic carbon nitride is widely studied in organic photoredox catalysis. Reductive quenching of carbon nitride excited state is postulated in many photocatalytic transformations. However, the reactivity of this species in the turn over step is less explored. In this work, we investigate electron and proton transfer from carbon nitride that is photocharged to a various extent, while the negative charge is compensated either by protons or ammonium cations. Strong stabilization of electrons by ammonium cations makes proton-coupled electron transfer uphill, and affords air-stable persistent carbon nitride radicals. In carbon nitrides, which are photocharged to a smaller extent, protons do not stabilize electrons, which results in spontaneous charge transfer to oxidants. Facile proton-coupled electron transfer is a key step in the photocatalytic oxidative-reductive cascade - tetramerization of benzylic amines. The feasibility of proton-coupled electron transfer is modulated by adjusting the extent of carbon nitride photocharging, type of counterion and temperature.

摘要

石墨相氮化碳在有机光氧化还原催化领域得到了广泛研究。在许多光催化转化过程中,人们推测氮化碳激发态会发生还原猝灭。然而,该物种在周转步骤中的反应活性却较少被探究。在这项工作中,我们研究了不同程度光充电的氮化碳中的电子和质子转移,其中负电荷由质子或铵阳离子补偿。铵阳离子对电子的强烈稳定作用使得质子耦合电子转移变为上坡过程,并产生了空气稳定的持久性氮化碳自由基。在光充电程度较小的氮化碳中,质子不会稳定电子,这导致电荷自发转移到氧化剂上。质子耦合电子转移是光催化氧化还原级联反应——苄胺四聚化的关键步骤。通过调节氮化碳的光充电程度、抗衡离子类型和温度,可以调控质子耦合电子转移的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e50/10674013/d322efa0fe1b/41467_2023_43328_Fig1_HTML.jpg

相似文献

2
Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts.
J Am Chem Soc. 2017 Jun 14;139(23):7904-7912. doi: 10.1021/jacs.7b02869. Epub 2017 Jun 2.
3
Multisite PCET with photocharged carbon nitride in dark.
Exploration (Beijing). 2021 Dec 16;1(3):20210063. doi: 10.1002/EXP.20210063. eCollection 2021 Dec.
4
Insights into the Role of Graphitic Carbon Nitride as a Photobase in Proton-Coupled Electron Transfer in (sp )C-H Oxygenation of Oxazolidinones.
Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202301815. doi: 10.1002/anie.202301815. Epub 2023 Mar 28.
6
Reductive Photocatalytic Proton-Coupled Electron Transfer by a Zirconium-Based Molecular Platform.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202411867. doi: 10.1002/anie.202411867. Epub 2024 Nov 12.
7
Modulating Crystallinity of Graphitic Carbon Nitride for Photocatalytic Oxidation of Alcohols.
ChemSusChem. 2017 Nov 23;10(22):4451-4456. doi: 10.1002/cssc.201701392. Epub 2017 Oct 4.
8
Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution.
ChemSusChem. 2015 Apr 24;8(8):1404-10. doi: 10.1002/cssc.201403278. Epub 2015 Mar 20.
9
Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO Reduction Using Mn, Re, and Ru Catalysts.
Acc Chem Res. 2022 Mar 1;55(5):616-628. doi: 10.1021/acs.accounts.1c00616. Epub 2022 Feb 8.
10
Photoelectrochemical Conversion of Dinitrogen to Benzonitrile: Selectivity Control by Electrophile- versus Proton-Coupled Electron Transfer.
Angew Chem Int Ed Engl. 2022 Aug 26;61(35):e202205922. doi: 10.1002/anie.202205922. Epub 2022 Jul 18.

引用本文的文献

1
Polymeric Carbon Nitride-Photocatalyzed Aerobic Epoxidation of Alkenes: Application to a Sustainable Synthesis of Rose Oxide.
ChemSusChem. 2025 Jul 27;18(15):e202500934. doi: 10.1002/cssc.202500934. Epub 2025 Jun 16.
2
A Mind Map to Address the Next Generation of Artificial Photosynthesis Experiments.
Small. 2025 May;21(21):e2501385. doi: 10.1002/smll.202501385. Epub 2025 Apr 3.
3
Carbon nitride caught in the act of artificial photosynthesis.
Nat Commun. 2025 Jan 3;16(1):374. doi: 10.1038/s41467-024-55518-x.
4
Optically Gated Dissociation of a Heptazinyl Radical Liberates H through a Reactive πσ* State.
ACS Phys Chem Au. 2024 Jul 5;4(6):598-604. doi: 10.1021/acsphyschemau.4c00030. eCollection 2024 Nov 27.

本文引用的文献

1
Insights into the Role of Graphitic Carbon Nitride as a Photobase in Proton-Coupled Electron Transfer in (sp )C-H Oxygenation of Oxazolidinones.
Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202301815. doi: 10.1002/anie.202301815. Epub 2023 Mar 28.
2
Assignment of the Crystal Structure to the -Pinacol Coupling Product by X-ray Diffraction and Density Functional Theory Modeling.
ACS Omega. 2022 Nov 3;7(45):41581-41585. doi: 10.1021/acsomega.2c05446. eCollection 2022 Nov 15.
3
Morphology and Light-Dependent Spatial Distribution of Spin Defects in Carbon Nitride.
Angew Chem Int Ed Engl. 2022 Oct 24;61(43):e202210640. doi: 10.1002/anie.202210640. Epub 2022 Sep 27.
4
Identification of the Structure of Triethanolamine Oxygenation Products in Carbon Nitride Photocatalysis.
ChemistryOpen. 2022 Jul;11(7):e202200095. doi: 10.1002/open.202200095.
6
Photomemristive sensing charge storage in 2D carbon nitrides.
Mater Horiz. 2022 Jul 4;9(7):1866-1877. doi: 10.1039/d2mh00069e.
7
Conductivity Mechanism in Ionic 2D Carbon Nitrides: From Hydrated Ion Motion to Enhanced Photocatalysis.
Adv Mater. 2022 Feb;34(7):e2107061. doi: 10.1002/adma.202107061. Epub 2022 Jan 6.
8
Visible light organic photoredox catalytic cascade reactions.
Chem Commun (Camb). 2021 Dec 3;57(96):12914-12935. doi: 10.1039/d1cc04883j.
9
Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration.
Chem Rev. 2022 Jan 26;122(2):1875-1924. doi: 10.1021/acs.chemrev.1c00263. Epub 2021 Aug 6.
10
Photocatalytic Water Splitting Reaction Catalyzed by Ion-Exchanged Salts of Potassium Poly(heptazine imide) 2D Materials.
J Phys Chem C Nanomater Interfaces. 2021 Jul 1;125(25):13749-13758. doi: 10.1021/acs.jpcc.1c03947. Epub 2021 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验