Suppr超能文献

三碘化铋与葡萄糖氧化酶偶联:光电化学生物分析的特殊协同双催化机制。

Bismuth Oxyiodide Couples with Glucose Oxidase: A Special Synergized Dual-Catalysis Mechanism for Photoelectrochemical Enzymatic Bioanalysis.

机构信息

School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics , Nanjing 211106, China.

State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China.

出版信息

ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3372-3379. doi: 10.1021/acsami.7b17647. Epub 2018 Jan 22.

Abstract

On the basis of a special synergized dual-catalysis mechanism, this work reports the preparation of a BiOI-based heterojunction and its use for cathodic photoelectrochemical (PEC) oxidase biosensing, which, unexpectedly, revealed that hydrogen peroxide (HO) had a greater impact than dioxygen (O). Specifically, the BiOI layer was in situ formed on the substrate through an impregnating hydroxylation method for the following coupling with the model enzyme of glucose oxidases (GOx). The constructed cathodic PEC enzyme sensor exhibited a good analytical performance of rapid response, high stability, and good selectivity. Especially, glucose-induced HO-controlled enhancement of the photocurrent was recorded rather than the commonly observed O-dependent suppression of the signal. This interesting phenomenon was attributed to a special synergized dual-catalysis mechanism. Briefly, this study is expected to provide a new BiOI-based photocathode for general PEC bioanalysis development and to inspire more interest in the design and construction of a novel heterojunction for advanced photocathodic bioanalysis. More importantly, the mechanism revealed here would offer a totally different perspective for the use of a biomimetic catalyst in the design of future PEC enzymatic sensing and the understanding of relevant signaling routes as well as the implementation of innovative PEC devices.

摘要

基于特殊的协同双催化机制,本工作报道了一种基于 BiOI 的异质结的制备及其在阴极光电化学(PEC)氧化酶生物传感中的应用,出乎意料的是,研究结果表明过氧化氢(HO)比氧气(O)的影响更大。具体来说,通过浸渍羟化法在基底上原位形成 BiOI 层,随后与葡萄糖氧化酶(GOx)的模型酶进行偶联。构建的阴极 PEC 酶传感器表现出快速响应、高稳定性和良好选择性的良好分析性能。特别是,记录到葡萄糖诱导的 HO 控制的光电流增强,而不是通常观察到的信号的 O 依赖性抑制。这种有趣的现象归因于特殊的协同双催化机制。简而言之,本研究有望为一般 PEC 生物分析的发展提供一种基于 BiOI 的新型光阴极,并激发更多兴趣设计和构建用于先进光阴极生物分析的新型异质结。更重要的是,这里揭示的机制将为在未来 PEC 酶感应设计中使用仿生催化剂以及理解相关信号通路以及实现创新 PEC 设备提供一个完全不同的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验