Suppr超能文献

基于机器学习和网络拓扑特征预测必需基因和蛋白质:综述

Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review.

作者信息

Zhang Xue, Acencio Marcio Luis, Lemke Ney

机构信息

Department of Computer Science, Xiangnan University Hunan, China.

Department of Physics and Biophysics, Institute of Biosciences of Botucatu, São Paulo State University Botucatu, Brazil.

出版信息

Front Physiol. 2016 Mar 8;7:75. doi: 10.3389/fphys.2016.00075. eCollection 2016.

Abstract

Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research.

摘要

必需蛋白质/基因对于生物体的生存或繁殖是不可或缺的,删除此类必需蛋白质将导致致死性或不育。必需基因的鉴定不仅对于理解生物体生存的最低要求非常重要,而且对于寻找人类疾病基因和新的药物靶点也很重要。鉴定必需基因的实验方法成本高、耗时且费力。随着测序基因组数据和高通量实验数据的积累,提出了许多鉴定必需蛋白质的计算方法,这些方法是实验方法的有益补充。在这篇综述中,我们展示了基于机器学习和网络拓扑特征鉴定必需基因和蛋白质的最新方法,指出了当前方法的进展和局限性,并讨论了进一步研究的挑战和方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec23/4781880/86019646a3ca/fphys-07-00075-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验