Sample Christine, Fryxell John M, Bieri Joanna A, Federico Paula, Earl Julia E, Wiederholt Ruscena, Mattsson Brady J, Flockhart D T Tyler, Nicol Sam, Diffendorfer Jay E, Thogmartin Wayne E, Erickson Richard A, Norris D Ryan
Department of Mathematics Emmanuel College Boston MA USA.
Department of Integrative Biology University of Guelph Guelph ON Canada.
Ecol Evol. 2017 Nov 30;8(1):493-508. doi: 10.1002/ece3.3685. eCollection 2018 Jan.
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles.
种群在时间和空间上的移动变化从根本上塑造了种群的数量和分布。尽管有多种方法对结构化种群动态进行建模,但它们仅限于特定类型的空间结构化种群,并且缺乏一个统一的框架。在此,我们提出一个基于网络的统一框架,其灵活性足以捕捉包括集合种群和一系列迁徙模式在内的各种时空过程。它可以容纳不同类型的年龄结构、种群增长形式、扩散、游牧和迁徙,以及不同的生活史策略。我们的目标是在一个单一的数学框架下,将所有空间结构化种群共有的三个通用要素(空间、时间和移动)联系起来。为此,我们采用网络建模方法。种群的空间结构由一个加权有向网络表示。每个节点和每条边都有一组随时间变化的属性。我们基于网络的种群动态用离散时间步长进行建模。通过理论和实际例子,我们展示了常见要素如何在具有不同移动策略的物种中反复出现,以及它们如何在一个统一的数学框架下进行组合。我们说明了如何用这种建模方法来表示集合种群、各种迁徙模式和游牧。我们还将基于网络的框架应用于四种具有广泛生活史、移动模式和承载能力的生物。我们提供了实现该框架的通用计算机代码,它几乎可以应用于任何空间结构化种群。这个框架有助于我们从理论上理解种群动态,并具有实际管理应用,包括理解扰动对种群数量、分布和移动模式的影响。通过在一个共同的框架内工作,比较分析受模型细节而非一般原则影响的可能性就更小了。