School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K.
Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, U.K.
Biol Rev Camb Philos Soc. 2018 Aug;93(3):1578-1603. doi: 10.1111/brv.12409. Epub 2018 Mar 25.
Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can be occupied by different sets of resident and migrant individuals in different seasons, and where locations that can support reproduction can also be linked by dispersal. We outline key forms of within-individual and among-individual variation and structure in migration that could arise within such systems and interact with variation in individual survival, reproduction and dispersal to create complex population dynamics and evolutionary responses across locations, seasons, years and generations. Third, we review approaches by which population dynamic and eco-evolutionary models could be developed to test hypotheses regarding the dynamics and persistence of partially migratory meta-populations given diverse forms of seasonal environmental variation and change, and to forecast system-specific dynamics. To demonstrate one such approach, we use an evolutionary individual-based model to illustrate that multiple forms of partial migration can readily co-exist in a simple spatially structured landscape. Finally, we summarise recent empirical studies that demonstrate key components of demographic structure in partial migration, and demonstrate diverse associations with reproduction and survival. We thereby identify key theoretical and empirical knowledge gaps that remain, and consider multiple complementary approaches by which these gaps can be filled in order to elucidate population dynamic and eco-evolutionary responses to spatio-temporal seasonal environmental variation and change.
生态学中越来越重要的目标是理解和预测种群动态以及对季节性环境变化的进化响应。这种种群和进化动态是由所有关键生活史特征的即时和滞后反应以及由此产生的人口增长率的人口动态率决定的,这些特征会影响到人口增长率、季节性环境条件和人口密度。然而,现有的种群动态和生态进化理论和模型还没有完全包含个体内和个体间的变异性、协变性、结构和异质性,以及正在进行的进化,这是一个关键的生活史特征,允许个体对季节性环境条件做出反应:季节性迁徙。与此同时,借助新的动物跟踪技术的实证研究越来越多地证明,在发生和形式上存在大量的迁徙与全年居住之间的个体内和个体间的变化,从而产生了跨越不同物种、生境和空间尺度的各种形式的“部分迁徙”。这种部分迁徙系统在完全迁徙和全年居住的极端情况下形成了一个连续体,在自然界中很常见。在这里,我们首先回顾部分迁徙的基本情况,并审查相关模型,以确定有利于维持迁徙多态性的条件。我们强调,这些模型对于部分迁徙理论的发展至关重要,但与考虑具有扩散但没有迁徙的空间结构种群或考虑具有强烈季节性和完全强制性迁徙的种群的丰富的种群动态理论和模型相比,这些模型在空间和人口统计学上都很简单。第二,为了提供一个时空人口动态的总体概念框架,我们将“部分迁徙元种群”系统定义为一个由不同季节居住和移民个体可以居住的不同位置组成的空间结构集合,其中可以支持繁殖的位置也可以通过扩散连接起来。我们概述了在这种系统中可能出现的迁徙中的个体内和个体间变异性和结构的关键形式,并与个体生存、繁殖和扩散的变异性相互作用,以在不同的地点、季节、年份和世代中产生复杂的人口动态和进化响应。第三,我们回顾了种群动态和生态进化模型的方法,这些方法可以用来检验在不同形式的季节性环境变化和变化下,部分迁徙元种群的动态和持久性的假设,并预测系统特定的动态。为了演示其中一种方法,我们使用进化个体基础模型来说明,多种形式的部分迁徙可以很容易地在一个简单的空间结构景观中共存。最后,我们总结了最近的实证研究,这些研究证明了部分迁徙中人口结构的关键组成部分,并证明了与繁殖和生存的多种关联。因此,我们确定了仍然存在的关键理论和实证知识差距,并考虑了多种互补的方法来填补这些差距,以阐明对时空季节性环境变化和变化的人口动态和生态进化响应。