Suppr超能文献

利用纹理分析对常规增强多排螺旋 CT(MDCT)进行机会性骨质疏松症筛查的可行性。

Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis.

机构信息

Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore.

Department of Radiology, Klinikum Landshut Achdorf, Landshut, Germany.

出版信息

Osteoporos Int. 2018 Apr;29(4):825-835. doi: 10.1007/s00198-017-4342-3. Epub 2018 Jan 10.

Abstract

UNLABELLED

This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%.

INTRODUCTION

This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis.

METHODS

We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM).

RESULTS

The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%.

CONCLUSIONS

Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

摘要

本研究旨在探讨利用纹理分析在常规增强 MDCT 检查中进行机会性骨质疏松筛查的可行性。结果表明,纹理特征具有可接受的重现性,这些特征可以以 83%的准确率区分健康/骨质疏松性骨折组。

引言

本研究旨在探讨利用纹理分析在常规增强 MDCT 检查中进行机会性骨质疏松筛查的可行性。

方法

我们在常规 MDCT 检查中对脊柱进行纹理分析,并研究了静脉内对比剂(IVCM)(n=7)、层厚(n=7)、长期重现性(n=9)和区分健康/骨质疏松性骨折组(n=9 对年龄和性别匹配的患者)的能力。使用灰度共生矩阵(GLCM)提取了 8 个纹理特征。采用独立样本 t 检验对健康/骨折组的特征进行排序,并采用支持向量机(SVM)进行分类。

结果

结果显示,来自有/无 IVCM 的 MDCT 扫描的纹理参数之间存在显著相关性(r 高达 0.91),1mm 与 2mm 和 3mm 层厚之间的相关性(r 高达 0.96),以及扫描-扫描之间的相关性(r 高达 0.59)。SVM 分类器的性能通过 10 倍交叉验证进行评估,平均分类准确率为 83%。

结论

在常规增强 MDCT 检查中,可以使用特定的纹理参数(能量、熵和同质性)和 SVM 在脊柱上进行机会性骨质疏松筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验