Suppr超能文献

软骨内成骨建模:机械负荷与骨形态的影响

Modeling endochondral ossification: Effects of mechanical loading and bone shape.

作者信息

Bustamante-Porras Cristian Rodrigo, Marquez-Florez Kalenia, Duque-Daza Carlos Alberto, Garzón-Alvarado Diego Alexander

机构信息

GNUM Research Group, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá D.C., 111321, Colombia.

Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, Paris, France.

出版信息

J Orthop. 2025 May 31;68:197-218. doi: 10.1016/j.jor.2025.05.034. eCollection 2025 Oct.

Abstract

BACKGROUND

The influence of mechanical and biochemical factors has been extensively studied through the development of mathematical, computational and experimental research, offering insights into bone development and the complex interplay of contributing factors. This knowledge has potential applications in multiple areas of medical science. However, existing models lack flexibility in simulating diverse geometric and loading conditions. This study proposes the development of a model to address these limitations.

METHODS

A computational approach employing parametric geometry and loading conditions was applied, accounting for the effects of stress on epiphyseal growth. Finite element analyses were conducted iteratively to predict potential sites of secondary ossification based on stress distribution. Three distinct scenarios with varying geometry and loading conditions were evaluated, revealing differences in the presence, number, and spatial distribution of secondary ossification centers (SOCs).

FINDINGS

The variation in the onset of SOCs across different configurations and parameter adjustments was analyzed. The model predicts a shift in SOC location influenced by cartilage concavity and width; the formation of two ossification centers in concave heads subjected to dual loading; reduced surface ossification contributing to articular cartilage; and a decrease in the ossification index (OI) with increased volume.

CONCLUSIONS

The model emulates the formation of anatomically distinct human joints, though some certain outputs based on non-biological geometries were excluded. Moreover, the model focuses solely on mechanical and geometrical influences, while other aspects of mechanobiology should be incorporated in future work. Nevertheless, the model effectively captures the formation of various human joints and provides a foundation for future studies and diverse applications in medical research, particularly in bone growth disorders.

摘要

背景

通过数学、计算和实验研究的发展,对机械和生化因素的影响进行了广泛研究,为骨骼发育以及相关因素的复杂相互作用提供了见解。这些知识在医学科学的多个领域具有潜在应用。然而,现有模型在模拟不同几何形状和加载条件时缺乏灵活性。本研究提出开发一个模型来解决这些局限性。

方法

采用一种利用参数化几何形状和加载条件的计算方法,考虑应力对骨骺生长的影响。基于应力分布,通过迭代进行有限元分析以预测二次骨化的潜在部位。评估了三种具有不同几何形状和加载条件的不同情况,揭示了二次骨化中心(SOC)的存在、数量和空间分布的差异。

结果

分析了不同构型和参数调整下SOC起始的变化。该模型预测SOC位置受软骨凹陷和宽度影响而发生偏移;在承受双重加载的凹头中形成两个骨化中心;表面骨化减少有助于关节软骨形成;并且随着体积增加骨化指数(OI)降低。

结论

该模型模拟了解剖学上不同的人体关节的形成,不过排除了一些基于非生物几何形状的特定输出。此外,该模型仅关注机械和几何影响,而机械生物学的其他方面应在未来工作中纳入。尽管如此,该模型有效地捕捉了各种人体关节的形成,并为未来研究以及医学研究中的各种应用,特别是在骨骼生长障碍方面,提供了基础。

相似文献

6
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

本文引用的文献

2
A Brief Review of Bone Cell Function and Importance.骨细胞功能与重要性简述
Cells. 2023 Nov 5;12(21):2576. doi: 10.3390/cells12212576.
3
The role of computational models in mechanobiology of growing bone.计算模型在骨骼生长力学生物学中的作用。
Front Bioeng Biotechnol. 2022 Nov 18;10:973788. doi: 10.3389/fbioe.2022.973788. eCollection 2022.
8
Computational model of a synovial joint morphogenesis.滑膜关节形态发生的计算模型。
Biomech Model Mechanobiol. 2020 Oct;19(5):1389-1402. doi: 10.1007/s10237-019-01277-4. Epub 2019 Dec 20.
10
A computational model for the joint onset and development.联合发病和发展的计算模型。
J Theor Biol. 2018 Oct 7;454:345-356. doi: 10.1016/j.jtbi.2018.04.015. Epub 2018 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验