Suppr超能文献

一个线性规划计算框架整合了磷酸化蛋白质组学和先验知识来预测药物疗效。

A linear programming computational framework integrates phosphor-proteomics and prior knowledge to predict drug efficacy.

作者信息

Ji Zhiwei, Wang Bing, Yan Ke, Dong Ligang, Meng Guanmin, Shi Lei

机构信息

School of Electronical and Information Engineering, Anhui University of Technology, Maanshan, 243002, China.

School of Information & Electronic Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, 310018, China.

出版信息

BMC Syst Biol. 2017 Dec 21;11(Suppl 7):127. doi: 10.1186/s12918-017-0501-6.

Abstract

BACKGROUND

In recent years, the integration of 'omics' technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc.

RESULTS

In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds' treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound's efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound's treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds.

CONCLUSIONS

In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets.

摘要

背景

近年来,“组学”技术、高性能计算以及生物过程的数学建模相结合,标志着系统生物学已开始从根本上影响药物研发的方式。LINCS公共数据仓库提供了有关细胞对各种遗传和环境应激源反应的详细信息。它在开发新药和治疗方法,以及改善癌症治疗中缺乏有效药物、耐药性和复发等情况方面可能会有很大帮助。

结果

在本研究中,我们开发了一种基于三元状态的整数线性规划(TILP)方法,以推断细胞特异性信号通路网络并预测化合物的治疗效果。我们研究的新颖之处在于将磷酸化蛋白质组学数据和先验知识结合起来,用于信号网络的建模和优化。为了测试我们方法的效力,构建了一个针对人乳腺癌细胞系MCF7的通用通路网络;并使用TILP模型,利用从十种代表性小分子化合物(其中大多数已在乳腺癌治疗中进行过研究)收集的一组磷酸化蛋白质组学数据来推断MCF7特异性通路。交叉验证表明,由TILP推断出的MCF7特异性通路网络在预测化合物疗效方面是可靠的。最后,我们应用TILP重新优化推断出的细胞特异性通路,并预测五种小化合物(卡莫司汀、多柔比星、GW - 8510、柔红霉素和维拉帕米)的结果,这些化合物在临床上很少用于乳腺癌治疗。在模拟中,所提出的方法有助于我们定性和定量地识别化合物的治疗效果,交叉验证分析表明在预测这五种化合物的效果方面具有良好的准确性。

结论

总之,TILP模型对于发现临床使用的新药以及阐明化合物作用靶点的潜在机制是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/5763468/c470a222fdd7/12918_2017_501_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验