Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska 3, 01601, Kyiv, Ukraine.
Institute of Mathematical Problems of Biology, The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Russia.
Sci Rep. 2018 Jan 11;8(1):416. doi: 10.1038/s41598-017-18666-3.
We consider a system of generalized phase oscillators with a central element and radial connections. In contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system include not only the phase of each oscillator but also the natural frequency of the central oscillator, and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate parameter values the system demonstrates winner-take-all behavior in terms of the competition between peripheral oscillators for the synchronization with the central oscillator. Conditions for the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was observed and is described in detail. Computer simulations of the system allow an optimal choice of parameters for winner-take-all implementation.
我们考虑了一个具有中心元素和径向连接的广义相振荡器系统。与传统的 Kuramoto 型相振荡器不同,我们系统中的动态变量不仅包括每个振荡器的相位,还包括中心振荡器的自然频率以及从外围振荡器到中心振荡器的连接强度。在适当的参数值下,系统在竞争中表现出赢家通吃的行为外围振荡器与中心振荡器同步。为固定和非固定类型的系统动力学推导了赢家通吃模式的条件。介绍了从固定到非固定赢家通吃动力学的过渡的分岔分析。观察到并详细描述了一种称为鞍结在不变环面上的分岔(SNIT)分岔的新型分岔类型。系统的计算机模拟允许为赢家通吃实现选择最佳参数。