Kappel David, Nessler Bernhard, Maass Wolfgang
Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria.
PLoS Comput Biol. 2014 Mar 27;10(3):e1003511. doi: 10.1371/journal.pcbi.1003511. eCollection 2014 Mar.
In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the model through several computer simulations. The full power of hidden Markov model learning can be attained through reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate learning method for an artificial grammar task.
为了在过马路时不被车撞到,我们需要能够快速提取动态变化的多模态感官刺激背后隐藏的原因,并预测其未来的演变。我们在此表明,一种通用的皮层微电路基序,即具有侧向兴奋和抑制作用的锥体细胞,为这种困难但至关重要的信息处理能力提供了基础。在存在噪声的情况下,通过STDP对具有侧向兴奋的胜者全得电路中锥体细胞之间连接的影响,这种能力会自动出现。事实上,可以证明这些基序赋予皮层微电路以隐马尔可夫模型的功能特性,隐马尔可夫模型是一种通过概率推理解决此类任务的通用模型。在工程应用中,该模型通过离线学习来适应特定任务,而我们在此表明,隐马尔可夫模型的大部分功能已经源自STDP的在线应用,无需任何监督或奖励。我们通过几个计算机模拟展示了该模型的涌现计算能力。通过奖励门控的STDP可以实现隐马尔可夫模型学习的全部能力。这是因为这些机制能够实现对理论上最优学习的拒绝采样近似。我们研究了这种更精确的学习方法在人工语法任务中可能实现的性能提升。