Northern Illinois University, Computation Science, DeKalb, IL, 60115, USA.
University of Chicago, Computation Institute, Chicago, IL, 60637, USA.
Sci Rep. 2018 Jan 11;8(1):421. doi: 10.1038/s41598-017-18972-w.
Antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ±1 two-fold dilution factor, is 92%. Individual accuracies are ≥90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.
抗微生物药物耐药性感染是全球范围内严重的公共卫生威胁。全基因组测序方法可快速鉴定病原体并预测抗生素耐药表型,与传统的基于培养的方法相比,这种方法变得更加可行,并可能有助于减少临床检测周转时间,从而改善患者的预后。在这项研究中,我们使用了来自 1668 株肺炎克雷伯菌临床分离株的全基因组序列数据,开发了一种基于 XGBoost 的机器学习模型,可准确预测 20 种抗生素的最小抑菌浓度(MIC)。该模型在±1 倍稀释因子内的总体准确率为 92%。对于 15/20 种抗生素,其准确率均≥90%。我们表明,模型预测的 MIC 值与已知的抗微生物药物耐药基因相关。重要的是,本研究中描述的全基因组方法为预测未知耐药基因内容的分离株的 MIC 值提供了一种方法。这项研究表明,机器学习可用于为肺炎克雷伯菌构建完整的虚拟 MIC 预测面板,并为其他病原菌的 MIC 预测模型的构建提供了框架。