Suppr超能文献

开发一种用于肺炎克雷伯菌的计算机模拟最小抑菌浓度检测板试验。

Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae.

机构信息

Northern Illinois University, Computation Science, DeKalb, IL, 60115, USA.

University of Chicago, Computation Institute, Chicago, IL, 60637, USA.

出版信息

Sci Rep. 2018 Jan 11;8(1):421. doi: 10.1038/s41598-017-18972-w.

Abstract

Antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ±1 two-fold dilution factor, is 92%. Individual accuracies are ≥90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.

摘要

抗微生物药物耐药性感染是全球范围内严重的公共卫生威胁。全基因组测序方法可快速鉴定病原体并预测抗生素耐药表型,与传统的基于培养的方法相比,这种方法变得更加可行,并可能有助于减少临床检测周转时间,从而改善患者的预后。在这项研究中,我们使用了来自 1668 株肺炎克雷伯菌临床分离株的全基因组序列数据,开发了一种基于 XGBoost 的机器学习模型,可准确预测 20 种抗生素的最小抑菌浓度(MIC)。该模型在±1 倍稀释因子内的总体准确率为 92%。对于 15/20 种抗生素,其准确率均≥90%。我们表明,模型预测的 MIC 值与已知的抗微生物药物耐药基因相关。重要的是,本研究中描述的全基因组方法为预测未知耐药基因内容的分离株的 MIC 值提供了一种方法。这项研究表明,机器学习可用于为肺炎克雷伯菌构建完整的虚拟 MIC 预测面板,并为其他病原菌的 MIC 预测模型的构建提供了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e57/5765115/e9685f044f6f/41598_2017_18972_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验