Suppr超能文献

全基因组测序用于预测淋病奈瑟菌的抗生素最低抑菌浓度。

WGS to predict antibiotic MICs for Neisseria gonorrhoeae.

作者信息

Eyre David W, De Silva Dilrini, Cole Kevin, Peters Joanna, Cole Michelle J, Grad Yonatan H, Demczuk Walter, Martin Irene, Mulvey Michael R, Crook Derrick W, Walker A Sarah, Peto Tim E A, Paul John

机构信息

Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Oxford National Institute for Health Research Health Protection Research Unit, Oxford, UK.

出版信息

J Antimicrob Chemother. 2017 Jul 1;72(7):1937-1947. doi: 10.1093/jac/dkx067.

Abstract

BACKGROUND

Tracking the spread of antimicrobial-resistant Neisseria gonorrhoeae is a major priority for national surveillance programmes.

OBJECTIVES

We investigate whether WGS and simultaneous analysis of multiple resistance determinants can be used to predict antimicrobial susceptibilities to the level of MICs in N. gonorrhoeae.

METHODS

WGS was used to identify previously reported potential resistance determinants in 681 N. gonorrhoeae isolates, from England, the USA and Canada, with phenotypes for cefixime, penicillin, azithromycin, ciprofloxacin and tetracycline determined as part of national surveillance programmes. Multivariate linear regression models were used to identify genetic predictors of MIC. Model performance was assessed using leave-one-out cross-validation.

RESULTS

Overall 1785/3380 (53%) MIC values were predicted to the nearest doubling dilution and 3147 (93%) within ±1 doubling dilution and 3314 (98%) within ±2 doubling dilutions. MIC prediction performance was similar across the five antimicrobials tested. Prediction models included the majority of previously reported resistance determinants. Applying EUCAST breakpoints to MIC predictions, the overall very major error (VME; phenotypically resistant, WGS-prediction susceptible) rate was 21/1577 (1.3%, 95% CI 0.8%-2.0%) and the major error (ME; phenotypically susceptible, WGS-prediction resistant) rate was 20/1186 (1.7%, 1.0%-2.6%). VME rates met regulatory thresholds for all antimicrobials except cefixime and ME rates for all antimicrobials except tetracycline. Country of testing was a strongly significant predictor of MIC for all five antimicrobials.

CONCLUSIONS

We demonstrate a WGS-based MIC prediction approach that allows reliable MIC prediction for five gonorrhoea antimicrobials. Our approach should allow reasonably precise prediction of MICs for a range of bacterial species.

摘要

背景

追踪耐抗菌药物淋病奈瑟菌的传播是国家监测计划的首要任务。

目的

我们研究全基因组测序(WGS)和同时分析多个耐药决定因素是否可用于预测淋病奈瑟菌对最低抑菌浓度(MIC)水平的抗菌药物敏感性。

方法

使用WGS鉴定来自英格兰、美国和加拿大的681株淋病奈瑟菌分离株中先前报道的潜在耐药决定因素,作为国家监测计划的一部分,测定了这些分离株对头孢克肟、青霉素、阿奇霉素、环丙沙星和四环素的表型。使用多元线性回归模型确定MIC的遗传预测因子。使用留一法交叉验证评估模型性能。

结果

总体而言,1785/3380(53%)的MIC值被预测到最接近的稀释倍数翻倍,3147(93%)在±1个稀释倍数翻倍范围内,3314(98%)在±2个稀释倍数翻倍范围内。在所测试的五种抗菌药物中,MIC预测性能相似。预测模型包括大多数先前报道的耐药决定因素。将欧洲抗菌药物敏感性试验委员会(EUCAST)的断点应用于MIC预测,总体极重大错误(VME;表型耐药,WGS预测敏感)率为21/1577(1.3%,95%可信区间0.8%-2.0%),重大错误(ME;表型敏感,WGS预测耐药)率为20/1186(1.7%,1.0%-2.6%)。除头孢克肟外,所有抗菌药物的VME率均符合监管阈值,除四环素外,所有抗菌药物的ME率均符合监管阈值。检测国家是所有五种抗菌药物MIC的强显著预测因子。

结论

我们展示了一种基于WGS的MIC预测方法,该方法可对五种淋病抗菌药物进行可靠的MIC预测。我们的方法应该能够对一系列细菌物种的MIC进行合理精确的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验