Suppr超能文献

铜绿假单胞菌抗生素耐药性预测的基因组学。

Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa.

机构信息

Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK.

出版信息

Ann N Y Acad Sci. 2019 Jan;1435(1):5-17. doi: 10.1111/nyas.13358. Epub 2017 Jun 2.

Abstract

Antibiotic resistance is a worldwide health issue spreading quickly among human and animal pathogens, as well as environmental bacteria. Misuse of antibiotics has an impact on the selection of resistant bacteria, thus contributing to an increase in the occurrence of resistant genotypes that emerge via spontaneous mutation or are acquired by horizontal gene transfer. There is a specific and urgent need not only to detect antimicrobial resistance but also to predict antibiotic resistance in silico. We now have the capability to sequence hundreds of bacterial genomes per week, including assembly and annotation. Novel and forthcoming bioinformatics tools can predict the resistome and the mobilome with a level of sophistication not previously possible. Coupled with bacterial strain collections and databases containing strain metadata, prediction of antibiotic resistance and the potential for virulence are moving rapidly toward a novel approach in molecular epidemiology. Here, we present a model system in antibiotic-resistance prediction, along with its promises and limitations. As it is commonly multidrug resistant, Pseudomonas aeruginosa causes infections that are often difficult to eradicate. We review novel approaches for genotype prediction of antibiotic resistance. We discuss the generation of microbial sequence data for real-time patient management and the prediction of antimicrobial resistance.

摘要

抗生素耐药性是一个全球性的健康问题,在人类和动物病原体以及环境细菌中迅速传播。抗生素的滥用对耐药细菌的选择有影响,从而导致通过自发突变或水平基因转移获得的耐药基因型的出现增加。不仅需要检测抗菌药物的耐药性,而且需要在计算机上预测抗生素的耐药性,这是一个特定而紧迫的需求。我们现在每周都有能力对数百个细菌基因组进行测序,包括组装和注释。新型和即将推出的生物信息学工具可以以前所未有的复杂程度预测抗性组和可移动组。结合包含菌株元数据的菌株收集和数据库,对抗生素耐药性的预测和毒力的可能性正在迅速朝着分子流行病学的新方法发展。在这里,我们提出了一个抗生素耐药性预测的模型系统,以及它的承诺和局限性。由于铜绿假单胞菌通常具有多药耐药性,因此它引起的感染往往难以根除。我们回顾了抗生素耐药性基因型预测的新方法。我们讨论了用于实时患者管理和预测抗菌药物耐药性的微生物序列数据的生成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验