Suppr超能文献

用于实时和高分辨率微环境传感和成像的响应型水凝胶基光子纳链。

Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution.

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China.

Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.

出版信息

Nano Lett. 2020 Feb 12;20(2):803-811. doi: 10.1021/acs.nanolett.7b04218. Epub 2018 Jan 17.

Abstract

Microenvironment sensing and imaging are of importance in microscale zones like microreactors, microfluidic systems, and biological cells. But they are so far implemented only based on chemical colors from dyes or quantum dots, which suffered either from photobleaching, quenching, or photoblinking behaviors, or from limited color gamut. In contrast, structural colors from hydrogel-based photonic crystals (PCs) may be stable and tunable in the whole visible spectrum by diffraction peak shift, facilitating the visual detection with high accuracy. However, the current hydrogel-based PCs are all inappropriate for microscale detection due to the bulk size. Here we demonstrate the smallest hydrogel-based PCs, responsive hydrogel-based photonic nanochains with high-resolution and real-time response, by developing a general hydrogen bond-guided template polymerization method. A variety of mechanically separated stimuli-responsive hydrogel-based photonic nanochains have been obtained in a large scale including those responding to pH, solvent, and temperature. Each of them has a submicrometer diameter and is composed of individual one-dimensional periodic structure of magnetic particles locked by a tens-of-nanometer-thick peapod-like responsive hydrogel shell. Taking the pH-responsive hydrogel-based photonic nanochains, for example, pH-induced hydrogel volume change notably alters the nanochain length, resulting in a significant variation of the structural color. The submicrometer size endows the nanochains with improved resolution and response time by 2-3 orders of magnitude than the previous counterparts. Our results for the first time validate the feasibility of using structural colors for microenvironment sensing and imaging and may further promote the applications of responsive PCs, such as in displays and printing.

摘要

微环境传感和成像在微反应器、微流控系统和生物细胞等微尺度区域中非常重要。但迄今为止,它们仅基于染料或量子点的化学颜色来实现,这些颜色要么存在光漂白、猝灭或光闪烁行为,要么色域有限。相比之下,基于水凝胶的光子晶体 (PC) 的结构颜色可以通过衍射峰位移在整个可见光谱范围内稳定且可调谐,从而便于高精度的可视化检测。然而,由于体积较大,目前基于水凝胶的 PCs 都不适合微尺度检测。在这里,我们通过开发一种通用氢键导向模板聚合方法,展示了最小的基于水凝胶的 PC,即具有高分辨率和实时响应的响应性水凝胶基光子纳链。通过这种方法,我们已经大规模地获得了各种机械分离的响应性水凝胶基光子纳链,包括对 pH、溶剂和温度有响应的纳链。它们每一个的直径都在亚微米级,由通过数十纳米厚的豆荚状响应性水凝胶壳锁定的单个一维周期性结构的磁性颗粒组成。以 pH 响应性水凝胶基光子纳链为例,pH 诱导的水凝胶体积变化显著改变了纳链的长度,从而导致结构颜色发生显著变化。亚微米级的尺寸使纳链的分辨率和响应时间提高了 2-3 个数量级,优于以前的同类产品。我们的研究结果首次验证了使用结构颜色进行微环境传感和成像的可行性,并可能进一步推动响应性 PCs 的应用,例如在显示器和印刷方面的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验