State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China.
Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China.
Adv Sci (Weinh). 2024 Aug;11(30):e2401711. doi: 10.1002/advs.202401711. Epub 2024 Jun 13.
Individual differences in size, experience, and task specialization in natural swarms often result in heterogeneity and hierarchy, facilitating efficient and coordinated task accomplishment. Drawing inspiration from this phenomenon, a general strategy is proposed for organizing magnetic micro/nanorobots (MNRs) with apparent differences in size, shape, and properties into cohesive microswarms with tunable heterogeneity, controlled spatial hierarchy, and collaborative tasking capability. In this strategy, disparate magnetic MNRs can be manipulated to show reversible transitions between synchronization and desynchronization by elaborately regulating parameter sets of the rotating magnetic field. Utilizing these transitions, alongside local robust hydrodynamic interactions, diverse heterospecific pairings of disparate magnetic MNRs can be organized into heterogeneous microswarms, and their spatial organization can be dynamically adjusted from egalitarian to leader-follower-like hierarchies on the fly, both in open space and complex microchannels. Furthermore, when specializing the disparate MNRs with distinct functions ("division of labor") such as sensing and drug carrying, they can execute precise drug delivery targeting unknown sites in a collaborative sensing-navigating-cargo dropping sequence, demonstrating significant potential for precise tumor treatment. These findings highlight the critical roles of attribute differences and hierarchical organization in designing efficient swarming micro/nanorobots for biomedical applications.
个体在大小、经验和任务专业化方面的差异在自然群体中经常导致异质性和层级结构,从而促进高效协调的任务完成。受此现象启发,提出了一种通用策略,用于将大小、形状和性能明显不同的磁性微/纳米机器人 (MNR) 组织成具有可调异质性、可控空间层次结构和协作任务能力的凝聚微群。在这种策略中,通过精心调节旋转磁场的参数集,可以操纵不同的磁性 MNR 以显示同步和去同步之间的可逆转变。利用这些转变以及局部强大的流体动力相互作用,可以将不同磁性 MNR 的各种异质配对组织成异质微群,并可以动态调整其空间组织,从平等主义到类似领导者-追随者的层级结构,无论是在开放空间还是复杂微通道中。此外,当专门为具有不同功能(“分工”)的不同 MNR 进行专业化时,例如传感和药物输送,它们可以执行精确的药物输送,以协同传感-导航-货物投放的顺序靶向未知部位,为精确的肿瘤治疗展示出巨大的潜力。这些发现强调了属性差异和层次结构组织在设计用于生物医学应用的高效群体微/纳米机器人方面的关键作用。