Li Luolin, Yu Zheng, Liu Jianfeng, Yang Manyi, Shi Gongpu, Feng Ziqi, Luo Wei, Ma Huiru, Guan Jianguo, Mou Fangzhi
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
Nanomicro Lett. 2023 May 29;15(1):141. doi: 10.1007/s40820-023-01095-5.
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic FeO nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
微纳机器人能够在许多难以到达的生物环境中推进和导航,因此可能给生物医学研究及应用带来变革性变化。然而,当前的微纳机器人缺乏在未知微环境中集体感知和报告物理化学变化的能力。在此,我们提议开发群体响应光子纳米机器人,其能够即时绘制局部物理化学条件,并进一步指导局部光热治疗。响应光子纳米机器人由周期性组装的磁性FeO纳米颗粒的光子纳米链组成,该纳米链封装在响应性水凝胶壳中,并展现出多种集成功能,包括高能磁驱动群体运动、明亮的刺激响应结构色和光热转换。因此,它们能够利用可控的群体运动在复杂环境中主动导航,然后通过响应结构色集体绘制出局部异常物理化学条件(例如pH值、温度或葡萄糖浓度)来可视化未知目标(例如肿瘤病变),并进一步引导外部光照射以启动局部光热治疗。这项工作推动了用于癌症和炎症性疾病的智能运动纳米传感器以及多功能纳米诊疗学的发展。