Suppr超能文献

用于心肌运动和变形分析的机器学习方法。

Machine Learning Approaches for Myocardial Motion and Deformation Analysis.

作者信息

Duchateau Nicolas, King Andrew P, De Craene Mathieu

机构信息

CREATIS, CNRS UMR 5220, INSERM U1206, Université, Lyon, France.

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

出版信息

Front Cardiovasc Med. 2020 Jan 9;6:190. doi: 10.3389/fcvm.2019.00190. eCollection 2019.

Abstract

Information about myocardial motion and deformation is key to differentiate normal and abnormal conditions. With the advent of approaches relying on data rather than pre-conceived models, machine learning could either improve the robustness of motion quantification or reveal patterns of motion and deformation (rather than single parameters) that differentiate pathologies. We review machine learning strategies for extracting motion-related descriptors and analyzing such features among populations, keeping in mind constraints specific to the cardiac application.

摘要

心肌运动和变形的信息是区分正常和异常情况的关键。随着依赖数据而非预先设定模型的方法的出现,机器学习可以提高运动量化的稳健性,或者揭示区分病理状态的运动和变形模式(而非单个参数)。我们回顾了用于提取与运动相关描述符并在人群中分析此类特征的机器学习策略,同时牢记心脏应用特有的限制条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb02/6962100/da29fc543fcd/fcvm-06-00190-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验