Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK.
Department of Botany, University of Debrecen, Egyetem, Debrecen, Hungary.
Ann Bot. 2018 Jan 25;121(1):85-105. doi: 10.1093/aob/mcx129.
Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus.
At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology.
RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic.
The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework.
蜜蜂兰(Ophrys)已成为研究昆虫介导的拟交配繁殖以及探索由此产生的、假定适应性进化辐射的最受欢迎的模式系统。然而,尽管过去进行了大量研究,但该属的系统发育结构和物种多样性仍然存在很大争议。在这里,我们整合下一代测序和形态系统发育技术来阐明该属的系统发育。
从大规模克隆核核糖体内部转录间隔区(nrITS)测序中以前划定的十个种组的每个种组中,至少选取两个标本进行限制性位点相关测序(RAD-seq)。对 34 个标本的 4159 个单核苷酸多态性(SNP)的结果矩阵用于构建无根网络和有根最大似然系统发育树。并行的形态系统发育矩阵,包含 43 个字符,在映射到 RAD-seq 拓扑结构之前,生成了多态和非多态的简约树集合。
RAD-seq 数据强烈支持使用 nrITS 以前划定的十个种组中的九个种组的单系性,并确定了三个主要分支;相比之下,假定的微种几乎无法区分。RAD-seq 树与形态树和传统分类之间存在强烈的不一致;将形态特征映射到 RAD-seq 拓扑结构上,使得它们的同形性更强。
形态学同形性的相对较高水平反映了广泛的趋同,而 fusca 组的衍生位置归因于幼态简化。推断现存谱系最近共同祖先的表型,但它晚于构成该属特征的大多数特征状态变化。RAD-seq 可能代表分子系统发育学对理解 Ophrys 内部进化的贡献的最高水平;进一步的进展将需要大规模的种群水平研究,这些研究将在一个连贯的概念框架中整合表型和基因型数据。