Suppr超能文献

层 5 生长抑素表达中间神经元在小鼠皮层中的多样性和连通性。

Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex.

机构信息

Neuroscience Institute and Department of Neuroscience and Physiology, and.

Neuroscience Institute and Department of Neuroscience and Physiology, and

出版信息

J Neurosci. 2018 Feb 14;38(7):1622-1633. doi: 10.1523/JNEUROSCI.2415-17.2017. Epub 2018 Jan 11.

Abstract

Inhibitory interneurons represent 10-15% of the neurons in the somatosensory cortex, and their activity powerfully shapes sensory processing. Three major groups of GABAergic interneurons have been defined according to developmental, molecular, morphological, electrophysiological, and synaptic features. Dendritic-targeting somatostatin-expressing interneurons (SST-INs) have been shown to display diverse morphological, electrophysiological, and molecular properties and activity patterns However, the correlation between these properties and SST-IN subtype is unclear. In this study, we aimed to correlate the morphological diversity of layer 5 (L5) SST-INs with their electrophysiological and molecular diversity in mice of either sex. Our morphological analysis demonstrated the existence of three subtypes of L5 SST-INs with distinct electrophysiological properties: T-shaped Martinotti cells innervate L1, and are low-threshold spiking; fanning-out Martinotti cells innervate L2/3 and the lower half of L1, and show adapting firing patterns; non-Martinotti cells innervate L4, and show a quasi-fast spiking firing pattern. We estimated the proportion of each subtype in L5 and found that T-shaped Martinotti, fanning-out Martinotti, and Non-Martinotti cells represent ∼10, ∼50, and ∼40% of L5 SST-INs, respectively. Last, we examined the connectivity between the three SST-IN subtypes and L5 pyramidal cells (PCs). We found that L5 T-shaped Martinotti cells inhibit the L1 apical tuft of nearby PCs; L5 fanning-out Martinotti cells also inhibit nearby PCs but they target the dendrite mainly in L2/3. On the other hand, non-Martinotti cells inhibit the dendrites of L4 neurons while avoiding L5 PCs. Our data suggest that morphologically distinct SST-INs gate different excitatory inputs in the barrel cortex. Morphologically diverse layer 5 SST-INs show different patterns of activity in behaving animals. However, little is known about the abundance and connectivity of each morphological type and the correlation between morphological subtype and spiking properties. We demonstrate a correlation between the morphological and electrophysiological diversity of layer 5 SST-INs. Based on these findings we built a classifier to infer the abundance of each morphological subtype. Last, using paired recordings combined with morphological analysis, we investigated the connectivity of each morphological subtype. Our data suggest that, by targeting different cell types and cellular compartments, morphologically diverse SST-INs might gate different excitatory inputs in the mouse barrel cortex.

摘要

抑制性中间神经元占体感皮层神经元的 10-15%,其活动强烈影响感觉处理。根据发育、分子、形态、电生理和突触特征,已经定义了三大类 GABA 能中间神经元。已经表明,树突靶向生长抑素表达中间神经元(SST-INs)具有不同的形态、电生理和分子特性以及活动模式。然而,这些特性与 SST-IN 亚型之间的相关性尚不清楚。在这项研究中,我们旨在将层 5(L5)SST-IN 的形态多样性与雄性和雌性小鼠的电生理和分子多样性相关联。我们的形态分析表明,存在三种具有不同电生理特性的 L5 SST-IN 亚型:T 形 Martinotti 细胞支配 L1,具有低阈值爆发;扇形 Martinotti 细胞支配 L2/3 和 L1 的下半部分,表现出适应放电模式;非 Martinotti 细胞支配 L4,表现出准快速放电模式。我们估计了 L5 中每种亚型的比例,发现 T 形 Martinotti、扇形 Martinotti 和非 Martinotti 细胞分别占 L5 SST-IN 的约 10%、约 50%和约 40%。最后,我们检查了三种 SST-IN 亚型与 L5 锥体神经元(PCs)之间的连接。我们发现 L5 T 形 Martinotti 细胞抑制附近 PCs 的 L1 顶树突簇;L5 扇形 Martinotti 细胞也抑制附近的 PCs,但它们的靶标主要在 L2/3 的树突。另一方面,非 Martinotti 细胞抑制 L4 神经元的树突,同时避免 L5 PCs。我们的数据表明,形态不同的 SST-INs 在桶状皮层中调节不同的兴奋性输入。在行为动物中,形态不同的 L5 SST-IN 显示出不同的活动模式。然而,对于每种形态类型的丰度和连接性以及形态亚型与放电特性之间的相关性知之甚少。我们证明了层 5 SST-IN 的形态和电生理多样性之间存在相关性。基于这些发现,我们构建了一个分类器来推断每种形态亚型的丰度。最后,我们使用配对记录结合形态分析,研究了每种形态亚型的连接性。我们的数据表明,通过靶向不同的细胞类型和细胞区室,形态多样的 SST-INs 可能在小鼠桶状皮层中调节不同的兴奋性输入。

相似文献

1
Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex.
J Neurosci. 2018 Feb 14;38(7):1622-1633. doi: 10.1523/JNEUROSCI.2415-17.2017. Epub 2018 Jan 11.
2
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex.
J Neurosci. 2023 Jan 4;43(1):14-27. doi: 10.1523/JNEUROSCI.1661-21.2022. Epub 2022 Nov 16.
4
Four Unique Interneuron Populations Reside in Neocortical Layer 1.
J Neurosci. 2019 Jan 2;39(1):125-139. doi: 10.1523/JNEUROSCI.1613-18.2018. Epub 2018 Nov 9.
5
Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits.
Cereb Cortex. 2015 Aug;25(8):2114-26. doi: 10.1093/cercor/bhu020. Epub 2014 Feb 18.
6
Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex.
Brain Struct Funct. 2009 Dec;214(1):1-13. doi: 10.1007/s00429-009-0225-5. Epub 2009 Oct 31.
7
Inhibition by Somatostatin Interneurons in Olfactory Cortex.
Front Neural Circuits. 2016 Aug 17;10:62. doi: 10.3389/fncir.2016.00062. eCollection 2016.
8
Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4.
Neuron. 2013 Jan 9;77(1):155-67. doi: 10.1016/j.neuron.2012.11.004.
9
Learning-induced plasticity in the barrel cortex is disrupted by inhibition of layer 4 somatostatin-containing interneurons.
Biochim Biophys Acta Mol Cell Res. 2022 Jan;1869(1):119146. doi: 10.1016/j.bbamcr.2021.119146. Epub 2021 Sep 30.

引用本文的文献

3
Connectomics of predicted Sst transcriptomic types in mouse visual cortex.
Nature. 2025 Apr;640(8058):497-505. doi: 10.1038/s41586-025-08805-6. Epub 2025 Apr 9.
4
Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex.
bioRxiv. 2025 May 17:2025.02.26.640383. doi: 10.1101/2025.02.26.640383.
6
VIP-to-SST Cell Circuit Motif Shows Differential Short-Term Plasticity across Sensory Areas of Mouse Cortex.
J Neurosci. 2025 Mar 26;45(13):e0949242025. doi: 10.1523/JNEUROSCI.0949-24.2025.
8
Alpha-2 nicotinic acetylcholine receptors regulate spectral integration in auditory cortex.
Front Neural Circuits. 2024 Nov 1;18:1492452. doi: 10.3389/fncir.2024.1492452. eCollection 2024.
9
Common and contrasting effects of 5-HTergic signaling in pyramidal cells and SOM interneurons of the mouse cortex.
Neuropsychopharmacology. 2025 Apr;50(5):783-797. doi: 10.1038/s41386-024-02022-x. Epub 2024 Nov 7.
10
Transcriptomic cell-type specificity of local cortical circuits.
Neuron. 2024 Dec 4;112(23):3851-3866.e4. doi: 10.1016/j.neuron.2024.09.003. Epub 2024 Sep 30.

本文引用的文献

1
Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity.
Cell. 2017 Oct 19;171(3):522-539.e20. doi: 10.1016/j.cell.2017.08.032. Epub 2017 Sep 21.
2
Cortical gamma band synchronization through somatostatin interneurons.
Nat Neurosci. 2017 Jul;20(7):951-959. doi: 10.1038/nn.4562. Epub 2017 May 8.
3
Layer-specific modulation of neocortical dendritic inhibition during active wakefulness.
Science. 2017 Mar 3;355(6328):954-959. doi: 10.1126/science.aag2599.
4
Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation.
PLoS Biol. 2017 Feb 9;15(2):e2001392. doi: 10.1371/journal.pbio.2001392. eCollection 2017 Feb.
5
Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex.
Neuron. 2016 Sep 21;91(6):1228-1243. doi: 10.1016/j.neuron.2016.08.021. Epub 2016 Sep 8.
6
GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits.
Neuron. 2016 Jul 20;91(2):260-92. doi: 10.1016/j.neuron.2016.06.033.
8
Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes.
Nat Biotechnol. 2016 Feb;34(2):175-183. doi: 10.1038/nbt.3443. Epub 2015 Dec 21.
9
Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq.
Nat Biotechnol. 2016 Feb;34(2):199-203. doi: 10.1038/nbt.3445. Epub 2015 Dec 21.
10
Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences.
Cereb Cortex. 2015 Dec;25(12):4854-68. doi: 10.1093/cercor/bhv202. Epub 2015 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验