突触通讯的转录结构描绘了GABA能神经元身份。
Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity.
作者信息
Paul Anirban, Crow Megan, Raudales Ricardo, He Miao, Gillis Jesse, Huang Z Josh
机构信息
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA.
出版信息
Cell. 2017 Oct 19;171(3):522-539.e20. doi: 10.1016/j.cell.2017.08.032. Epub 2017 Sep 21.
Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types.
理解神经回路的组织逻辑需要解读神经元多样性和特性的生物学基础,但对于如何定义神经元类型尚无共识。我们分析了一组具有解剖学和生理学特征的皮质GABA能神经元的单细胞转录组,并针对区分它们的转录谱进行了计算基因组筛选。我们发现,主要的GABA能神经元类型由一种编码其突触通信模式的转录结构所界定。这种结构包括约40个基因家族的6个类别,包括细胞粘附分子、递质调节剂受体、离子通道、信号蛋白、神经肽和囊泡释放成分以及转录因子。各家族中特定成员的组合表达沿着细胞膜塑造了一个多层分子支架,该支架可能定制突触连接模式和输入-输出信号特性。这种神经元特性的分子遗传框架沿着多个轴整合细胞表型,并为发现和分类神经元类型提供了基础。
相似文献
Nat Rev Neurosci. 2019-6-20
Aging Cell. 2017-8
Nature. 2018-1-10
Brain Struct Funct. 2017-6-22
Mol Cell Neurosci. 2011-5-4
引用本文的文献
Cyborg Bionic Syst. 2025-8-19
bioRxiv. 2025-2-11
Nat Rev Neurosci. 2025-2
本文引用的文献
Nat Neurosci. 2016-2
Nat Rev Neurosci. 2015-12-10
Cell. 2015-10-8
Biol Psychiatry. 2015-6-15