Manitoba Chemosensory Biology (MCSB) Research Group, Winnipeg, MB, R3E 0W4, Canada.
Department of Oral Biology, University of Manitoba, Winnipeg, MB, R3E 0W4, Canada.
Mol Cell Biochem. 2018 Sep;446(1-2):63-72. doi: 10.1007/s11010-018-3273-4. Epub 2018 Jan 11.
Adenylyl cyclases (ACs) are membrane bound enzymes that catalyze the production of cAMP from ATP in response to the activation by G-protein Gαs. Different isoforms of ACs are ubiquitously expressed in different tissues involved in regulatory mechanisms in response to specific stimulants. There are 9 AC isoforms present in humans, with AC5 and AC6 proposed to play a vital role in cardiac functions. The activity of AC6 is sensitive to nitric oxide, such that nitrosylation of the protein might regulate its function. However, the information on structural determinants of nitrosylation in ACs and how they interact with Gαs is limited. Here we used homology modeling to build a molecular model of human AC6 bound to Gαs. Based on this 3D model, we predict the nitrosylation amenable cysteines, and identify potential novel ligands of AC6 using virtual ligand screening. Our model suggests Cys1004 in AC6 (subunit C2) and Cys174 in Gαs present at the AC-Gαs interface as the possible residues that might undergo reversible nitrosylation. Docking analysis predicted novel ligands of AC6 that include forskolin-based compounds and its derivatives. Further work involving site-directed mutagenesis of the predicted residues will allow manipulation of AC activity using novel ligands, and crucial insights on the role of nitrosylation of these proteins in pathophysiological conditions.
腺苷酸环化酶(ACs)是一种膜结合酶,可在 G 蛋白 Gαs 的激活下,将 ATP 转化为 cAMP。不同的 AC 同工型在参与特定刺激的调节机制的不同组织中广泛表达。人类有 9 种 AC 同工型,AC5 和 AC6 被认为在心脏功能中起着至关重要的作用。AC6 的活性对一氧化氮敏感,因此蛋白质的亚硝基化可能调节其功能。然而,关于 AC 中亚硝基化的结构决定因素及其与 Gαs 相互作用的信息有限。在这里,我们使用同源建模构建了与人 Gαs 结合的 AC6 的分子模型。基于这个 3D 模型,我们预测了可亚硝基化的半胱氨酸,并使用虚拟配体筛选鉴定了 AC6 的潜在新配体。我们的模型表明,AC6 中的 Cys1004(亚基 C2)和 Gαs 中的 Cys174 (位于 AC-Gαs 界面)可能是发生可逆亚硝基化的残基。对接分析预测了 AC6 的新配体,包括基于 forskolin 的化合物及其衍生物。涉及预测残基的定点突变的进一步工作将允许使用新型配体操纵 AC 活性,并深入了解这些蛋白质在病理生理条件下的亚硝基化作用。