Suppr超能文献

单像素成像算法的实验比较

Experimental comparison of single-pixel imaging algorithms.

作者信息

Bian Liheng, Suo Jinli, Dai Qionghai, Chen Feng

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2018 Jan 1;35(1):78-87. doi: 10.1364/JOSAA.35.000078.

Abstract

Single-pixel imaging (SPI) is a novel technique that captures 2D images using a photodiode, instead of conventional 2D array sensors. SPI has high signal-to-noise ratio, wide spectral range, low cost, and robustness to light scattering. Various algorithms have been proposed for SPI reconstruction, including linear correlation methods, the alternating projection (AP) method, and compressive sensing (CS) based methods. However, there has been no comprehensive review discussing respective advantages, which is important for SPI's further applications and development. In this paper, we review and compare these algorithms in a unified reconstruction framework. We also propose two other SPI algorithms, including a conjugate gradient descent (CGD) based method and a Poisson maximum-likelihood-based method. Both simulations and experiments validate the following conclusions: to obtain comparable reconstruction accuracy, the CS-based total variation (TV) regularization method requires the fewest measurements and consumes the least running time for small-scale reconstruction, the CGD and AP methods run fastest in large-scale cases, and the TV and AP methods are the most robust to measurement noise. In a word, there are trade-offs in capture efficiency, computational complexity, and robustness to noise among different SPI algorithms. We have released our source code for non-commercial use.

摘要

单像素成像(SPI)是一种新颖的技术,它使用光电二极管而非传统的二维阵列传感器来捕获二维图像。SPI具有高信噪比、宽光谱范围、低成本以及对光散射的鲁棒性。针对SPI重建已经提出了各种算法,包括线性相关方法、交替投影(AP)方法以及基于压缩感知(CS)的方法。然而,尚未有全面的综述来讨论各自的优点,而这对于SPI的进一步应用和发展至关重要。在本文中,我们在一个统一的重建框架中对这些算法进行了综述和比较。我们还提出了另外两种SPI算法,包括基于共轭梯度下降(CGD)的方法和基于泊松最大似然的方法。仿真和实验均验证了以下结论:为了获得可比的重建精度,基于CS的总变差(TV)正则化方法在小规模重建中所需的测量次数最少且运行时间最短,CGD和AP方法在大规模情况下运行速度最快,并且TV和AP方法对测量噪声最鲁棒。总之,不同的SPI算法在捕获效率、计算复杂度以及对噪声的鲁棒性方面存在权衡。我们已发布非商业用途的源代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验