Suppr超能文献

通过分子动力学轨迹评分预测纳米抗体-蛋白质复合物的结合亲和力

Binding affinity prediction of nanobody-protein complexes by scoring of molecular dynamics trajectories.

作者信息

Soler Miguel A, Fortuna Sara, de Marco Ario, Laio Alessandro

机构信息

SISSA, Via Bonomea 265, I-34136 Trieste, Italy.

出版信息

Phys Chem Chem Phys. 2018 Jan 31;20(5):3438-3444. doi: 10.1039/c7cp08116b.

Abstract

Nanobodies offer a viable alternative to antibodies for engineering high affinity binders. Their small size has an additional advantage: it allows exploiting computational protocols for optimizing their biophysical features, such as the binding affinity. The efficient prediction of this quantity is still considered a daunting task especially for modelled complexes. We show how molecular dynamics can successfully assist in the binding affinity prediction of modelled nanobody-protein complexes. The approximate initial configurations obtained by in silico design must undergo large rearrangements before achieving a stable conformation, in which the binding affinity can be meaningfully estimated. The scoring functions developed for the affinity evaluation of crystal structures will provide accurate estimates for modelled binding complexes if the scores are averaged over long finite temperature molecular dynamics simulations.

摘要

纳米抗体为工程化高亲和力结合剂提供了一种可行的抗体替代方案。它们的小尺寸还有一个额外的优势:允许利用计算协议来优化其生物物理特性,如结合亲和力。有效预测这个量仍然被认为是一项艰巨的任务,尤其是对于建模复合物。我们展示了分子动力学如何成功地辅助预测建模的纳米抗体-蛋白质复合物的结合亲和力。通过计算机设计获得的近似初始构型在达到稳定构象之前必须经历大量重排,在稳定构象中才能有意义地估计结合亲和力。如果分数是在长时间有限温度分子动力学模拟中进行平均,那么为晶体结构亲和力评估开发的评分函数将为建模的结合复合物提供准确的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验