Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
Department of Pathology and Taub Institute for Research on Aging and Alzheimer's Disease, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA.
Hum Mol Genet. 2018 Mar 15;27(6):1002-1014. doi: 10.1093/hmg/ddy017.
Receptor for Advanced Glycation End products (RAGE) has been implicated in amyloid β-peptide (Aβ)-induced perturbation relevant to the pathogenesis of Alzheimer's disease (AD). However, whether and how RAGE regulates Aβ metabolism remains largely unknown. Aβ formation arises from aberrant cleavage of amyloid pre-cursor protein (APP) by β- and γ-secretase. To investigate whether RAGE modulates β- and γ-secretase activity potentiating Aβ formation, we generated mAPP mice with genetic deletion of RAGE (mAPP/RO). These mice displayed reduced cerebral amyloid pathology, inhibited aberrant APP-Aβ metabolism by reducing β- and γ-secretases activity, and attenuated impairment of learning and memory compared with mAPP mice. Similarly, RAGE signal transduction deficient mAPP mice (mAPP/DN-RAGE) exhibited the reduction in Aβ40 and Aβ42 production and decreased β-and γ-secretase activity compared with mAPP mice. Furthermore, RAGE-deficient mAPP brain revealed suppression of activation of p38 MAP kinase and glycogen synthase kinase 3β (GSK3β). Finally, RAGE siRNA-mediated gene silencing or DN-RAGE-mediated signaling deficiency in the enriched human APP neuronal cells demonstrated suppression of activation of GSK3β, accompanied with reduction in Aβ levels and decrease in β- and γ-secretases activity. Our findings highlight that RAGE-dependent signaling pathway regulates β- and γ-secretase cleavage of APP to generate Aβ, at least in part through activation of GSK3β and p38 MAP kinase. RAGE is a potential therapeutic target to limit aberrant APP-Aβ metabolism in halting progression of AD.
晚期糖基化终产物受体(RAGE)与阿尔茨海默病(AD)发病机制相关的淀粉样β肽(Aβ)诱导的干扰有关。然而,RAGE 是否以及如何调节 Aβ 代谢仍知之甚少。Aβ 的形成源于淀粉样前体蛋白(APP)被β-和γ-分泌酶的异常切割。为了研究 RAGE 是否调节β-和γ-分泌酶活性增强 Aβ 的形成,我们生成了 RAGE 基因敲除的 mAPP 小鼠(mAPP/RO)。这些小鼠表现出脑淀粉样病理学减少,通过降低β-和γ-分泌酶活性抑制异常 APP-Aβ 代谢,并与 mAPP 小鼠相比,学习和记忆损伤减弱。同样,RAGE 信号转导缺陷的 mAPP 小鼠(mAPP/DN-RAGE)表现出 Aβ40 和 Aβ42 产生减少以及β-和γ-分泌酶活性降低。此外,RAGE 缺陷的 mAPP 脑显示 p38 MAP 激酶和糖原合酶激酶 3β(GSK3β)的激活受到抑制。最后,在富含人 APP 神经元的细胞中,RAGE siRNA 介导的基因沉默或 DN-RAGE 介导的信号缺陷表明 GSK3β 的激活受到抑制,伴随着 Aβ 水平降低以及β-和γ-分泌酶活性降低。我们的研究结果表明,RAGE 依赖性信号通路调节 APP 的β-和γ-分泌酶切割以产生 Aβ,至少部分通过激活 GSK3β 和 p38 MAP 激酶。RAGE 是限制 AD 进展中异常 APP-Aβ 代谢的潜在治疗靶点。