文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

等离子超材料阵列中的超窄表面晶格共振及其在生物传感中的应用。

Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.

机构信息

Aix Marseille Univ, CNRS, LP3, Marseille, France.

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK.

出版信息

Biosens Bioelectron. 2018 May 1;104:102-112. doi: 10.1016/j.bios.2017.12.001. Epub 2017 Dec 9.


DOI:10.1016/j.bios.2017.12.001
PMID:29331424
Abstract

When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLR, PSLR for air and water, respectively) and substrate (PSLR) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 10 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection.

摘要

当金纳米粒子(约 100nm)周期性介电质格子被激发时,局域等离子体共振(LPR)可以通过沿阵列平面传播的衍射波耦合,这导致等离子体共振线宽(窄至几个纳米半峰全宽)急剧变窄,并产生反射光相位奇点。这些现象对于提高等离子体生物传感器的性能非常有前景,但实现这种衍射耦合等离子体共振的条件,也称为等离子体表面格子共振(PSLR),并不总是与生物传感装置兼容,该装置需要将纳米粒子放置在玻璃基底和样品介质(空气、水)之间。在这里,我们考虑了在周期性介电质格子中排列的玻璃基底支撑的单个和双 Au 纳米粒子(约 100-200nm)阵列中激发 PSLR 的条件和特性,在直接和衰减全反射(ATR)几何结构中,并评估了它们对相邻样品介电介质折射率(RI)变化的敏感性。首先,我们确定了与介质(PSLR、空气和水的 PSLR 分别)和基底(PSLR)相关的模式,这些模式对应于介质和基底相关衍射截止边缘处单个等离子体振荡的耦合。我们表明,介质模式对 RI 变化的光谱敏感性取决于直接和 ATR 几何结构中的晶格周期性(在我们的情况下,每 RIU 变化约 320nm),而基底模式的敏感性要低得多。我们还表明,PSLR 的相位敏感性可以超过每 RIU 变化 10 度的相移,因此优于所有其他等离子体传感器的相关参数。我们最后通过使用标准链霉亲和素-生物素亲和模型证明了等离子体超材料阵列中表面格子共振在生物传感中的适用性。结合纳米级结构的优势,包括电场的剧烈集中、在纳米尺度上进行操作的可能性等,以及高相位和光谱敏感性,PSLR 有望将当前最先进的等离子体生物传感技术推向单分子无标记检测。

相似文献

[1]
Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.

Biosens Bioelectron. 2017-12-9

[2]
Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.

Chem Rev. 2018-6-27

[3]
Universal scaling of the figure of merit of plasmonic sensors.

ACS Nano. 2011-5-20

[4]
Label-free biosensing based on single gold nanostars as plasmonic transducers.

ACS Nano. 2010-10-13

[5]
Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.

Opt Express. 2012-12-3

[6]
Plasmonic detection of a model analyte in serum by a gold nanorod sensor.

Anal Chem. 2007-7-15

[7]
Plasmonic nanorod metamaterials for biosensing.

Nat Mater. 2009-11

[8]
Plasmonic vertical dimer arrays as elements for biosensing.

Anal Bioanal Chem. 2015-11

[9]
Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications.

ACS Nano. 2010-12-30

[10]
Label-free plasmonic detection of biomolecular binding by a single gold nanorod.

Anal Chem. 2008-2-15

引用本文的文献

[1]
Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study.

Materials (Basel). 2025-8-4

[2]
Double-Pulse Femtosecond Laser Fabrication of Highly Ordered Periodic Structures on Au Thin Films Enabling Low-Cost Plasmonic Applications.

ACS Nano. 2025-7-1

[3]
An ultrasensitive angular interrogation metasurface sensor based on the TE mode surface lattice resonance.

Microsyst Nanoeng. 2025-1-8

[4]
Sustainable Fabrication and Transfer of High-Precision Nanoparticle Arrays Using Recyclable Chemical Pattern Templates.

Adv Sci (Weinh). 2025-2

[5]
Three-dimensional surface lattice plasmon resonance effect from plasmonic inclined nanostructures via one-step stencil lithography.

Nanophotonics. 2024-1-12

[6]
High Quality-Factor All-Dielectric Metacavity for Label-Free Biosensing.

Adv Sci (Weinh). 2025-1

[7]
Defect-insensitive cylindrical surface lattice resonance array and its batch replication for enhanced immunoassay.

Microsyst Nanoeng. 2024-11-13

[8]
Normal Incidence Excitation of Out-of-Plane Lattice Resonances in Bipartite Arrays of Metallic Nanostructures.

ACS Photonics. 2023-12-18

[9]
Self-Confined Dewetting Mechanism in Wafer-Scale Patterning of Gold Nanoparticle Arrays with Strong Surface Lattice Resonance for Plasmonic Sensing.

Adv Sci (Weinh). 2024-3

[10]
Delocalized Electric Field Enhancement through Near-Infrared Quasi-BIC Modes in a Hollow Cuboid Metasurface.

Nanomaterials (Basel). 2023-10-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索