Suppr超能文献

利用近红外和中红外光谱对酒花颗粒进行品种鉴别。

Varietal discrimination of hop pellets by near and mid infrared spectroscopy.

机构信息

LAQV/REQUIMTE/ Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

LAQV/REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

出版信息

Talanta. 2018 Apr 1;180:69-75. doi: 10.1016/j.talanta.2017.12.030. Epub 2017 Dec 14.

Abstract

Hop is one of the most important ingredients of beer production and several varieties are commercialized. Therefore, it is important to find an eco-real-time-friendly-low-cost technique to distinguish and discriminate hop varieties. This paper describes the development of a method based on vibrational spectroscopy techniques, namely near- and mid-infrared spectroscopy, for the discrimination of 33 commercial hop varieties. A total of 165 samples (five for each hop variety) were analysed by both techniques. Principal component analysis, hierarchical cluster analysis and partial least squares discrimination analysis were the chemometric tools used to discriminate positively the hop varieties. After optimizing the spectral regions and pre-processing methods a total of 94.2% and 96.6% correct hop varieties discrimination were obtained for near- and mid-infrared spectroscopy, respectively. The results obtained demonstrate the suitability of these vibrational spectroscopy techniques to discriminate different hop varieties and consequently their potential to be used as an authenticity tool. Compared with the reference procedures normally used for hops variety discrimination these techniques are quicker, cost-effective, non-destructive and eco-friendly.

摘要

Hop 是啤酒生产的最重要原料之一,有多种商业化品种。因此,寻找一种生态实时友好、低成本的技术来区分和鉴别啤酒花品种非常重要。本文描述了一种基于振动光谱技术(近红外和中红外光谱)的方法的开发,用于鉴别 33 种商业啤酒花品种。两种技术共分析了 165 个样本(每个啤酒花品种 5 个)。主成分分析、层次聚类分析和偏最小二乘判别分析被用作化学计量工具,以积极地区分啤酒花品种。在优化光谱区域和预处理方法后,近红外和中红外光谱分别获得了 94.2%和 96.6%的正确啤酒花品种鉴别率。研究结果表明,这些振动光谱技术适用于区分不同的啤酒花品种,因此具有作为真实性工具的潜力。与通常用于啤酒花品种鉴别参考程序相比,这些技术更快、更具成本效益、无损且环保。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验