Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA.
California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
Adv Mater. 2018 Feb;30(8). doi: 10.1002/adma.201705706. Epub 2018 Jan 15.
Organic solar cells (OSCs) based on bulk heterojunction structures are promising candidates for next-generation solar cells. However, the narrow absorption bandwidth of organic semiconductors is a critical issue resulting in insufficient usage of the energy from the solar spectrum, and as a result, it hinders performance. Devices based on multiple-donor or multiple-acceptor components with complementary absorption spectra provide a solution to address this issue. OSCs based on multiple-donor or multiple-acceptor systems have achieved power conversion efficiencies over 12%. Moreover, the introduction of an additional component can further facilitate charge transfer and reduce charge recombination through cascade energy structure and optimized morphology. This progress report provides an overview of the recent progress in OSCs based on multiple-donor (polymer/polymer, polymer/dye, and polymer/small molecule) or multiple-acceptor (fullerene/fullerene, fullerene/nonfullerene, and nonfullerene/nonfullerene) components.
基于体异质结结构的有机太阳能电池(OSCs)是下一代太阳能电池的有前途的候选者。然而,有机半导体的窄吸收带宽是一个关键问题,导致太阳能光谱的能量利用不足,从而影响了性能。具有互补吸收光谱的多供体或多受体组件的器件为解决这一问题提供了一种解决方案。基于多供体或多受体体系的 OSCs 已实现超过 12%的功率转换效率。此外,通过级联能量结构和优化形态,引入额外的组件可以进一步促进电荷转移并减少电荷复合。本进展报告概述了基于多供体(聚合物/聚合物、聚合物/染料和聚合物/小分子)或多受体(富勒烯/富勒烯、富勒烯/非富勒烯和非富勒烯/非富勒烯)组件的 OSCs 的最新进展。