Suppr超能文献

工程聚合物囊泡用于诊断和治疗。

Engineering Polymersomes for Diagnostics and Therapy.

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore.

出版信息

Adv Healthc Mater. 2018 Apr;7(8):e1701276. doi: 10.1002/adhm.201701276. Epub 2018 Jan 15.

Abstract

Engineered polymer vesicles, termed as polymersomes, confer a flexibility to control their structure, properties, and functionality. Self-assembly of amphiphilic copolymers leads to vesicles consisting of a hydrophobic bilayer membrane and hydrophilic core, each of which is loaded with a wide array of small and large molecules of interests. As such, polymersomes are increasingly being studied as carriers of imaging probes and therapeutic drugs. Effective delivery of polymersomes necessitates careful design of polymersomes. Therefore, this review article discusses the design strategies of polymersomes developed for enhanced transport and efficacy of imaging probes and therapeutic drugs. In particular, the article focuses on overviewing technologies to regulate the size, structure, shape, surface activity, and stimuli- responsiveness of polymersomes and discussing the extent to which these properties and structure of polymersomes influence the efficacy of cargo molecules. Taken together with future considerations, this article will serve to improve the controllability of polymersome functions and accelerate the use of polymersomes in biomedical applications.

摘要

聚合物囊泡,称为聚合物囊泡,赋予了其控制结构、性质和功能的灵活性。两亲性共聚物的自组装导致了由疏水性双层膜和亲水性核组成的囊泡,其中每个囊泡都装载了广泛的小分子和大分子感兴趣的物质。因此,聚合物囊泡作为成像探针和治疗药物的载体越来越受到研究的关注。聚合物囊泡的有效递药需要对聚合物囊泡进行精心设计。因此,本文讨论了为增强成像探针和治疗药物的输送和疗效而开发的聚合物囊泡的设计策略。特别是,本文重点综述了调节聚合物囊泡大小、结构、形状、表面活性和刺激响应性的技术,并讨论了聚合物囊泡的这些性质和结构在多大程度上影响了货物分子的疗效。结合未来的考虑因素,本文将有助于提高聚合物囊泡功能的可控性,并加速聚合物囊泡在生物医学应用中的使用。

相似文献

1
Engineering Polymersomes for Diagnostics and Therapy.
Adv Healthc Mater. 2018 Apr;7(8):e1701276. doi: 10.1002/adhm.201701276. Epub 2018 Jan 15.
2
Nanoscale Polymersomes as Anti-Cancer Drug Carriers Applied for Pharmaceutical Delivery.
Curr Pharm Des. 2016;22(19):2857-65. doi: 10.2174/1381612822666160217142319.
3
Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine.
Int J Pharm. 2017 Mar 15;519(1-2):287-303. doi: 10.1016/j.ijpharm.2017.01.037. Epub 2017 Jan 20.
4
Polymersomes: a new multi-functional tool for cancer diagnosis and therapy.
Methods. 2008 Sep;46(1):25-32. doi: 10.1016/j.ymeth.2008.05.006. Epub 2008 Jun 20.
6
Stimuli-Responsive Polymersomes for Biomedical Applications.
Biomacromolecules. 2017 Mar 13;18(3):649-673. doi: 10.1021/acs.biomac.6b01704. Epub 2017 Feb 17.
7
Stimuli-responsive polymersomes for cancer therapy.
Biomater Sci. 2016 Jan;4(1):55-69. doi: 10.1039/c5bm00268k.
8
Emerging era of "somes": polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy.
Drug Deliv Transl Res. 2020 Oct;10(5):1171-1190. doi: 10.1007/s13346-020-00789-2.
9
Size-controlled self-assembly of superparamagnetic polymersomes.
ACS Nano. 2014 Jan 28;8(1):495-502. doi: 10.1021/nn405012h. Epub 2014 Jan 2.

引用本文的文献

1
Design and Applications of Polymersomes for Oral Drug Administration.
ACS Appl Mater Interfaces. 2025 May 28;17(21):30423-30435. doi: 10.1021/acsami.5c04658. Epub 2025 May 15.
2
Engineered nanoparticles as a promising drug delivery system for glioblastoma multiforme treatment.
Ther Deliv. 2025 Jun;16(6):593-606. doi: 10.1080/20415990.2025.2484170. Epub 2025 Mar 25.
3
Hallmarks of Polymersome Characterization.
ACS Mater Au. 2024 Dec 23;5(2):223-230. doi: 10.1021/acsmaterialsau.4c00107. eCollection 2025 Mar 12.
5
Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies.
Saudi Pharm J. 2024 Dec;32(12):102209. doi: 10.1016/j.jsps.2024.102209. Epub 2024 Nov 24.
7
Polymersomes as Innovative, Stimuli-Responsive Platforms for Cancer Therapy.
Pharmaceutics. 2024 Mar 26;16(4):463. doi: 10.3390/pharmaceutics16040463.
8
Polymeric Nanoparticles for Drug Delivery.
Chem Rev. 2024 May 8;124(9):5505-5616. doi: 10.1021/acs.chemrev.3c00705. Epub 2024 Apr 16.
9
USE OF ARTIFICIAL CELLS AS DRUG CARRIERS.
Mater Chem Front. 2021 Sep 21;5(18):6672-6692. doi: 10.1039/d1qm00717c. Epub 2021 Jul 16.
10
Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion.
Int J Mol Sci. 2024 Jan 23;25(3):1396. doi: 10.3390/ijms25031396.

本文引用的文献

1
Polymer Prodrug-Based Nanoreactors Activated by Tumor Acidity for Orchestrated Oxidation/Chemotherapy.
Nano Lett. 2017 Nov 8;17(11):6983-6990. doi: 10.1021/acs.nanolett.7b03531. Epub 2017 Oct 9.
2
Virus-Mimicking Chimaeric Polymersomes Boost Targeted Cancer siRNA Therapy In Vivo.
Adv Mater. 2017 Nov;29(42). doi: 10.1002/adma.201703285. Epub 2017 Sep 29.
3
Therapeutic Vesicular Nanoreactors with Tumor-Specific Activation and Self-Destruction for Synergistic Tumor Ablation.
Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14025-14030. doi: 10.1002/anie.201706964. Epub 2017 Oct 4.
4
Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing.
Sci Adv. 2017 Aug 2;3(8):e1700362. doi: 10.1126/sciadv.1700362. eCollection 2017 Aug.
6
Chemical and mechanical modulation of polymeric micelle assembly.
Nanoscale. 2017 Apr 20;9(16):5194-5204. doi: 10.1039/c6nr08414a.
7
Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.
J Immunol. 2017 May 1;198(9):3596-3604. doi: 10.4049/jimmunol.1601901. Epub 2017 Mar 13.
8
Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery.
ACS Nano. 2017 Feb 28;11(2):1957-1963. doi: 10.1021/acsnano.6b08079. Epub 2017 Feb 14.
10
A peptide functionalized nanomotor as an efficient cell penetrating tool.
Chem Commun (Camb). 2017 Jan 17;53(6):1088-1091. doi: 10.1039/c6cc09169e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验