Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
J Neurochem. 2018 Jul;146(2):133-144. doi: 10.1111/jnc.14306.
Characterization of the molecular signaling pathways underlying protein synthesis-dependent forms of synaptic plasticity, such as late long-term potentiation (L-LTP), can provide insights not only into memory expression/maintenance under physiological conditions but also potential mechanisms associated with the pathogenesis of memory disorders. Here, we report in mice that L-LTP failure induced by the mammalian (mechanistic) target of rapamycin complex 1 (mTORC1) inhibitor rapamycin is reversed by brain-specific genetic deletion of PKR-like ER kinase, PERK (PERK KO), a kinase for eukaryotic initiation factor 2α (eIF2α). In contrast, genetic removal of general control non-derepressible-2, GCN2 (GCN2 KO), another eIF2α kinase, or treatment of hippocampal slices with the PERK inhibitor GSK2606414, does not rescue rapamycin-induced L-LTP failure, suggesting mechanisms independent of eIF2α phosphorylation. Moreover, we demonstrate that phosphorylation of eukaryotic elongation factor 2 (eEF2) is significantly decreased in PERK KO mice but unaltered in GCN2 KO mice or slices treated with the PERK inhibitor. Reduction in eEF2 phosphorylation results in increased general protein synthesis, and thus could contribute to the mTORC1-independent L-LTP in PERK KO mice. We further performed experiments on mutant mice with genetic removal of eEF2K (eEF2K KO), the only known kinase for eEF2, and found that L-LTP in eEF2K KO mice is insensitive to rapamycin. These data, for the first time, connect reduction in PERK activity with the regulation of translation elongation in enabling L-LTP independent of mTORC1. Thus, our findings indicate previously unrecognized levels of complexity in the regulation of protein synthesis-dependent synaptic plasticity. Read the Editorial Highlight for this article on page 119. Cover Image for this issue: doi: 10.1111/jnc.14185.
描述依赖蛋白合成的突触可塑性的分子信号通路,如迟发性长时程增强(L-LTP),不仅可以深入了解生理条件下的记忆表达/维持机制,还可以了解与记忆障碍发病机制相关的潜在机制。在这里,我们在小鼠中报告称,mTORC1 抑制剂雷帕霉素诱导的 L-LTP 失败可通过脑特异性敲除蛋白激酶 R 样内质网激酶 PERK(PERK KO)得到逆转,PERK 是真核起始因子 2α(eIF2α)的一种激酶。相比之下,另一种 eIF2α 激酶一般控制非抑制物 2(GCN2)的基因缺失(GCN2 KO),或用 PERK 抑制剂 GSK2606414 处理海马切片,均不能挽救雷帕霉素诱导的 L-LTP 失败,表明存在独立于 eIF2α 磷酸化的机制。此外,我们证明在 PERK KO 小鼠中,真核延伸因子 2(eEF2)的磷酸化显著降低,但在 GCN2 KO 小鼠或用 PERK 抑制剂处理的切片中没有改变。eEF2 磷酸化的减少导致总蛋白合成增加,这可能有助于 PERK KO 小鼠中 mTORC1 独立的 L-LTP。我们进一步在基因敲除 eEF2K(eEF2K KO)的突变小鼠上进行实验,eEF2K 是唯一已知的 eEF2 激酶,发现 eEF2K KO 小鼠的 L-LTP 对雷帕霉素不敏感。这些数据首次将 PERK 活性的降低与翻译延伸的调节联系起来,使 L-LTP 独立于 mTORC1。因此,我们的发现表明,在调节依赖蛋白合成的突触可塑性方面存在以前未被认识到的复杂性。阅读本期杂志第 119 页的编辑亮点文章。本期封面图片:doi: 10.1111/jnc.14185.