Suppr超能文献

复杂疾病多靶点药物发现与设计的视角

A perspective on multi-target drug discovery and design for complex diseases.

作者信息

Ramsay Rona R, Popovic-Nikolic Marija R, Nikolic Katarina, Uliassi Elisa, Bolognesi Maria Laura

机构信息

Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia.

出版信息

Clin Transl Med. 2018 Jan 17;7(1):3. doi: 10.1186/s40169-017-0181-2.

Abstract

Diseases of infection, of neurodegeneration (such as Alzheimer's and Parkinson's diseases), and of malignancy (cancers) have complex and varied causative factors. Modern drug discovery has the power to identify potential modulators for multiple targets from millions of compounds. Computational approaches allow the determination of the association of each compound with its target before chemical synthesis and biological testing is done. These approaches depend on the prior identification of clinically and biologically validated targets. This Perspective will focus on the molecular and computational approaches that underpin drug design by medicinal chemists to promote understanding and collaboration with clinical scientists.

摘要

感染性疾病、神经退行性疾病(如阿尔茨海默病和帕金森病)以及恶性肿瘤(癌症)具有复杂多样的致病因素。现代药物发现有能力从数百万种化合物中识别出针对多个靶点的潜在调节剂。计算方法能够在进行化学合成和生物学测试之前确定每种化合物与其靶点的关联。这些方法依赖于事先鉴定出经过临床和生物学验证的靶点。本观点将聚焦于药物化学家进行药物设计所依据的分子和计算方法,以促进与临床科学家的理解和合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b59b/5770353/b3f853e5493f/40169_2017_181_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验