Center for Free Radical Biology, Birmingham, Alabama, USA.
Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
J Neurochem. 2018 Mar;144(6):691-709. doi: 10.1111/jnc.14308. Epub 2018 Feb 14.
Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.
帕金森病(PD)是一种以大脑广泛神经退行性变为特征的运动障碍。在 PD 尸检大脑中观察到显著的氧化、还原、代谢和蛋白毒性改变。导致生物能量健康下降的线粒体功能改变是重要的,需要进一步研究,以帮助开发 PD 严重程度和预后的生物标志物。现在越来越清楚的是,代谢和信号通路的多重打击可能会加剧 PD 的发病机制。事实上,遗传和全基因组关联研究的数据表明,控制蛋白质质量控制和代谢的基因相互作用的贡献。例如,通过一种称为线粒体自噬的过程负责清除功能失调的线粒体的关键蛋白的丧失已被发现导致 PD,并且与 PD 相关的相当一部分基因编码涉及自噬溶酶体途径的蛋白质。在这篇综述中,我们强调了蛋白毒性、氧化还原和代谢应激靶向线粒体的证据,以及自噬监视在维持线粒体质量中的作用。此外,我们总结了α-突触核蛋白、富含亮氨酸重复激酶 2 和 tau 在调节线粒体功能和自噬中的作用。在可以压倒线粒体质量控制机制的应激源中,我们将讨论 4-羟基壬烯醛和一氧化氮。自噬的影响取决于上下文,因此可以产生有益和有害的影响。此外,我们强调了靶向线粒体和自噬功能作为一种综合治疗策略的潜力,以及微生物组对 PD 易感性的新兴贡献。