Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA.
Biochem J. 2012 Jan 15;441(2):523-40. doi: 10.1042/BJ20111451.
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.
活性氧和氮物种通过多种机制改变细胞反应,这些机制正在被定义。在低水平时,它们是信号分子,而在高水平时,它们会破坏细胞器,特别是线粒体。氧化损伤和相关的线粒体功能障碍可能导致能量耗竭、细胞毒性介质的积累和细胞死亡。因此,理解应激适应和细胞死亡之间的界面对于理解氧化还原生物学和疾病发病机制非常重要。最近的研究发现,细胞反应这一开关处氧化还原信号的一个主要传感器是自噬。自噬活性是由一个复杂的分子机制介导的,包括 30 多种 Atg(自噬相关)蛋白和 50 种溶酶体水解酶。自噬体形成膜结构,隔离受损、氧化或功能失调的细胞内成分和细胞器,并将它们定向到溶酶体进行降解。这个自噬过程是线粒体周转的唯一已知机制。有人推测,自噬功能障碍可能导致线粒体功能异常、氧化或硝化应激。新兴的研究提供了对线粒体自噬(也称为线粒体自噬)如何被控制的新认识,以及自噬功能障碍对细胞氧化应激的影响。本综述重点介绍了氧化还原信号在自噬调节方面的最新研究,以及线粒体自噬的基本机制。此外,我们还讨论了自噬对线粒体功能和活性物质积累的影响。这在时间上发生氧化应激的退行性疾病中尤为相关,其中线粒体和自噬途径的功能障碍都起着作用。