Departments of Pharmaceutics (T.W., Z.W., B.D.C., M.S., K.G.C., C.G., B.P., Al.C., J.C., Q.M., K.E.T.), Medicine and Kidney Research Institute (I.H.d.B.), and Biostatistics (T.A.T.), University of Washington, Seattle, Washington; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (Z.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (R.S.F.); St. Jude Children's Research Hospital, Memphis, Tennessee (Am.C., E.G.S.); and Heartland Assays LLC, Ames, Iowa (R.L.H.).
Departments of Pharmaceutics (T.W., Z.W., B.D.C., M.S., K.G.C., C.G., B.P., Al.C., J.C., Q.M., K.E.T.), Medicine and Kidney Research Institute (I.H.d.B.), and Biostatistics (T.A.T.), University of Washington, Seattle, Washington; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (Z.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (R.S.F.); St. Jude Children's Research Hospital, Memphis, Tennessee (Am.C., E.G.S.); and Heartland Assays LLC, Ames, Iowa (R.L.H.)
Drug Metab Dispos. 2018 Apr;46(4):367-379. doi: 10.1124/dmd.117.078428. Epub 2018 Jan 17.
Metabolism of 25-hydroxyvitamin D (25OHD) plays a central role in regulating the biologic effects of vitamin D in the body. Although cytochrome P450-dependent hydroxylation of 25OHD has been extensively investigated, limited information is available on the conjugation of 25OHD In this study, we report that 25OHD is selectively conjugated to 25OHD-3--sulfate by human sulfotransferase 2A1 (SULT2A1) and that the liver is a primary site of metabolite formation. At a low (50 nM) concentration of 25OHD, 25OHD-3--sulfate was the most abundant metabolite, with an intrinsic clearance approximately 8-fold higher than the next most efficient metabolic route. In addition, 25OHD sulfonation was not inducible by the potent human pregnane X receptor agonist, rifampicin. The 25OHD sulfonation rates in a bank of 258 different human liver cytosols were highly variable but correlated with the rates of dehydroepiandrosterone sulfonation. Further analysis revealed a significant association between a common single nucleotide variant within intron 1 of (rs296361; minor allele frequency = 15% in whites) and liver cytosolic SULT2A1 content as well as 25OHD-3--sulfate formation rate, suggesting that variation in the gene contributes importantly to interindividual differences in vitamin D homeostasis. Finally, 25OHD-3--sulfate exhibited high affinity for the vitamin D binding protein and was detectable in human plasma and bile but not in urine samples. Thus, circulating concentrations of 25OHD-3--sulfate appear to be protected from rapid renal elimination, raising the possibility that the sulfate metabolite may serve as a reservoir of 25OHD in vivo, and contribute indirectly to the biologic effects of vitamin D.
25-羟维生素 D(25OHD)的代谢在调节体内维生素 D 的生物学效应中起着核心作用。虽然细胞色素 P450 依赖性羟化 25OHD 已被广泛研究,但关于 25OHD 的缀合信息有限。在这项研究中,我们报告 25OHD 可被人磺基转移酶 2A1(SULT2A1)选择性地缀合到 25OHD-3-O-硫酸盐,并且肝脏是代谢物形成的主要部位。在 25OHD 的低浓度(50 nM)下,25OHD-3-O-硫酸盐是最丰富的代谢物,其内在清除率比下一个最有效的代谢途径高约 8 倍。此外,25OHD 的磺化作用不能被有效的人孕烷 X 受体激动剂利福平诱导。在 258 种不同的人肝胞质中,25OHD 磺化率高度可变,但与脱氢表雄酮磺化率相关。进一步分析表明, 基因内含子 1 内的一个常见单核苷酸变异(rs296361;白人中的次要等位基因频率为 15%)与肝胞质 SULT2A1 含量以及 25OHD-3-O-硫酸盐形成率之间存在显著关联,提示 基因的变异对维生素 D 体内平衡的个体间差异有重要贡献。最后,25OHD-3-O-硫酸盐对维生素 D 结合蛋白具有高亲和力,可在人血浆和胆汁中检测到,但在尿液样本中检测不到。因此,循环中的 25OHD-3-O-硫酸盐浓度似乎免受快速肾清除的影响,这增加了硫酸盐代谢物可能作为体内 25OHD 储备的可能性,并间接地对维生素 D 的生物学效应做出贡献。