Suppr超能文献

基于同质像元变换的异质遥感图像变化检测。

Change Detection in Heterogenous Remote Sensing Images via Homogeneous Pixel Transformation.

出版信息

IEEE Trans Image Process. 2018 Apr;27(4):1822-1834. doi: 10.1109/TIP.2017.2784560.

Abstract

The change detection in heterogeneous remote sensing images remains an important and open problem for damage assessment. We propose a new change detection method for heterogeneous images (i.e., SAR and optical images) based on homogeneous pixel transformation (HPT). HPT transfers one image from its original feature space (e.g., gray space) to another space (e.g., spectral space) in pixel-level to make the pre-event and post-event images represented in a common space for the convenience of change detection. HPT consists of two operations, i.e., the forward transformation and the backward transformation. In forward transformation, for each pixel of pre-event image in the first feature space, we will estimate its mapping pixel in the second space corresponding to post-event image based on the known unchanged pixels. A multi-value estimation method with noise tolerance is introduced to determine the mapping pixel using -nearest neighbors technique. Once the mapping pixels of pre-event image are available, the difference values between the mapping image and the post-event image can be directly calculated. After that, we will similarly do the backward transformation to associate the post-event image with the first space, and one more difference value for each pixel will be obtained. Then, the two difference values are combined to improve the robustness of detection with respect to the noise and heterogeneousness (modality difference) of images. Fuzzy-c means clustering algorithm is employed to divide the integrated difference values into two clusters: changed pixels and unchanged pixels. This detection results may contain some noisy regions (i.e., small error detections), and we develop a spatial-neighbor-based noise filter to further reduce the false alarms and missing detections using belief functions theory. The experiments for change detection with real images (e.g., SPOT, ERS, and NDVI) during a flood in U.K. are given to validate the effectiveness of the proposed method.

摘要

异构遥感图像中的变化检测对于损害评估仍然是一个重要且尚未解决的问题。我们提出了一种基于同质像素变换(HPT)的异构图像(即 SAR 和光学图像)变化检测新方法。HPT 在像素级将一幅图像从其原始特征空间(例如灰度空间)转换到另一个空间(例如光谱空间),以便将前事件和后事件图像表示在一个公共空间中,便于变化检测。HPT 由两个操作组成,即正向变换和反向变换。在正向变换中,对于第一特征空间中前事件图像的每个像素,我们将根据已知的未变化像素来估计其在对应于后事件图像的第二空间中的映射像素。引入了一种具有噪声容忍度的多值估计方法,使用 -最近邻技术来确定映射像素。一旦获得前事件图像的映射像素,就可以直接计算映射图像与后事件图像之间的差值。之后,我们将类似地在后向变换中,将后事件图像与第一空间相关联,并且每个像素还会获得另一个差值。然后,将这两个差值结合起来,以提高检测对图像的噪声和异构性(模态差异)的鲁棒性。模糊-c 均值聚类算法用于将集成的差值分为两个聚类:变化像素和未变化像素。这个检测结果可能包含一些噪声区域(即小错误检测),我们使用置信度函数理论开发了一种基于空间邻域的噪声滤波器,以进一步减少虚假警报和漏检。使用英国洪水期间的真实图像(例如 SPOT、ERS 和 NDVI)进行的变化检测实验验证了所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验