Lee Catherine, Haneuse Sebastien, Wang Hai-Lin, Rose Sherri, Spellman Stephen R, Verneris Michael, Hsu Katharine C, Fleischhauer Katharina, Lee Stephanie J, Abdi Reza
Kaiser Permanente Division of Research, Oakland, CA, United States of America.
Department of Biostatistics, Harvard, T.H. Chan School of Public Health, Boston, MA, United States of America.
PLoS One. 2018 Jan 18;13(1):e0190610. doi: 10.1371/journal.pone.0190610. eCollection 2018.
Allogeneic hematopoietic cell transplantation (HCT) is the treatment of choice for a variety of hematologic malignancies and disorders. Unfortunately, acute graft-versus-host disease (GVHD) is a frequent complication of HCT. While substantial research has identified clinical, genetic and proteomic risk factors for acute GVHD, few studies have sought to develop risk prediction tools that quantify absolute risk. Such tools would be useful for: optimizing donor selection; guiding GVHD prophylaxis, post-transplant treatment and monitoring strategies; and, recruitment of patients into clinical trials. Using data on 9,651 patients who underwent first allogeneic HLA-identical sibling or unrelated donor HCT between 01/1999-12/2011 for treatment of a hematologic malignancy, we developed and evaluated a suite of risk prediction tools for: (i) acute GVHD within 100 days post-transplant and (ii) a composite endpoint of acute GVHD or death within 100 days post-transplant. We considered two sets of inputs: (i) clinical factors that are typically readily-available, included as main effects; and, (ii) main effects combined with a selection of a priori specified two-way interactions. To build the prediction tools we used the super learner, a recently developed ensemble learning statistical framework that combines results from multiple other algorithms/methods to construct a single, optimal prediction tool. Across the final super learner prediction tools, the area-under-the curve (AUC) ranged from 0.613-0.640. Improving the performance of risk prediction tools will likely require extension beyond clinical factors to include biological variables such as genetic and proteomic biomarkers, although the measurement of these factors may currently not be practical in standard clinical settings.
异基因造血细胞移植(HCT)是多种血液系统恶性肿瘤和疾病的首选治疗方法。不幸的是,急性移植物抗宿主病(GVHD)是HCT常见的并发症。虽然大量研究已经确定了急性GVHD的临床、遗传和蛋白质组学风险因素,但很少有研究试图开发能够量化绝对风险的风险预测工具。这样的工具将有助于:优化供体选择;指导GVHD预防、移植后治疗和监测策略;以及招募患者参加临床试验。利用1999年1月至2011年12月期间接受首次同基因HLA匹配的同胞或无关供体HCT治疗血液系统恶性肿瘤的9651例患者的数据,我们开发并评估了一套风险预测工具,用于:(i)移植后100天内的急性GVHD,以及(ii)移植后100天内急性GVHD或死亡的复合终点。我们考虑了两组输入:(i)通常容易获得的临床因素,作为主要效应纳入;以及(ii)主要效应与一系列先验指定的双向相互作用相结合。为了构建预测工具,我们使用了超级学习器,这是一种最近开发的集成学习统计框架,它结合了多种其他算法/方法的结果来构建一个单一的最佳预测工具。在最终的超级学习器预测工具中,曲线下面积(AUC)范围为0.613 - 0.640。虽然目前在标准临床环境中测量这些因素可能不实用,但提高风险预测工具的性能可能需要扩展到临床因素之外,以纳入遗传和蛋白质组学生物标志物等生物学变量。