Gori G, Michelangeli M, Defenu N, Trombettoni A
CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste, Italy.
SISSA, Via Bonomea 265, I-34136 Trieste, Italy.
Phys Rev E. 2017 Jul;96(1-1):012108. doi: 10.1103/PhysRevE.96.012108. Epub 2017 Jul 5.
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C/r^{d+σ}, where r is the distance length between distinct sites and d=1. We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value C_{c} at which percolation occurs. The critical exponents in the range 0<σ<1 are reported. Our analysis is in agreement, up to a numerical precision ≈10^{-3}, with the mean-field result for the anomalous dimension η=2-σ, showing that there is no correction to η due to correlation effects. The obtained values for C_{c} are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ=1 and from the ɛ-expansion used with the introduction of a suitably defined effective dimension d_{eff} relating the long-range model with a short-range one in dimension d_{eff}. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ>0.
在本文中,我们研究了一维链上的键渗流,其键概率为幂律形式(C/r^{d + \sigma}),其中(r)是不同位点之间的距离长度,且(d = 1)。我们引入并测试了一种(N)阶蒙特卡罗算法,并确定了作为(\sigma)函数的渗流发生时的临界值(C_{c})。报告了(0 < \sigma < 1)范围内的临界指数。我们的分析在数值精度约为(10^{-3})的范围内与反常维度(\eta = 2 - \sigma)的平均场结果一致,表明由于关联效应,(\eta)没有修正。将得到的(C_{c})值与已知的精确边界进行比较,同时将临界指数(\nu)与平均场理论的结果、围绕(\sigma = 1)点的展开结果以及在引入适当定义的有效维度(d_{eff})(将长程模型与维度为(d_{eff})的短程模型相关联)时使用的(\epsilon)展开结果进行比较。我们最终给出了我们在一般图上进行键渗流算法的一种形式,在包括短程渗流和任意空间维度(d)((\sigma > 0))的平移不变长程模型在内的一大类图上具有(N)阶效率。