Suppr超能文献

受阻聚集下点岛模型的碎片化方法:获取势垒能量。

Fragmentation approach to the point-island model with hindered aggregation: Accessing the barrier energy.

作者信息

González Diego Luis, Pimpinelli Alberto, Einstein T L

机构信息

Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia.

Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA.

出版信息

Phys Rev E. 2017 Jul;96(1-1):012804. doi: 10.1103/PhysRevE.96.012804. Epub 2017 Jul 24.

Abstract

We study the effect of hindered aggregation on the island formation process in a one- (1D) and two-dimensional (2D) point-island model for epitaxial growth with arbitrary critical nucleus size i. In our model, the attachment of monomers to preexisting islands is hindered by an additional attachment barrier, characterized by length l_{a}. For l_{a}=0 the islands behave as perfect sinks while for l_{a}→∞ they behave as reflecting boundaries. For intermediate values of l_{a}, the system exhibits a crossover between two different kinds of processes, diffusion-limited aggregation and attachment-limited aggregation. We calculate the growth exponents of the density of islands and monomers for the low coverage and aggregation regimes. The capture-zone (CZ) distributions are also calculated for different values of i and l_{a}. In order to obtain a good spatial description of the nucleation process, we propose a fragmentation model, which is based on an approximate description of nucleation inside of the gaps for 1D and the CZs for 2D. In both cases, the nucleation is described by using two different physically rooted probabilities, which are related with the microscopic parameters of the model (i and l_{a}). We test our analytical model with extensive numerical simulations and previously established results. The proposed model describes excellently the statistical behavior of the system for arbitrary values of l_{a} and i=1, 2, and 3.

摘要

我们研究了在具有任意临界核尺寸(i)的一维(1D)和二维(2D)点岛外延生长模型中,受阻聚集对岛形成过程的影响。在我们的模型中,单体附着到预先存在的岛受到一个额外的附着势垒的阻碍,该势垒由长度(l_{a})表征。当(l_{a}=0)时,岛表现为完美的汇,而当(l_{a}\to\infty)时,它们表现为反射边界。对于(l_{a})的中间值,系统表现出两种不同过程之间的交叉,即扩散限制聚集和附着限制聚集。我们计算了低覆盖率和聚集区域中岛和单体密度的生长指数。还针对不同的(i)和(l_{a})值计算了捕获区(CZ)分布。为了获得成核过程的良好空间描述,我们提出了一个碎片化模型,该模型基于对一维间隙内和二维捕获区内核成核的近似描述。在这两种情况下,成核都通过使用两个不同的基于物理的概率来描述,这两个概率与模型的微观参数((i)和(l_{a}))相关。我们用广泛的数值模拟和先前建立的结果来检验我们的分析模型。所提出的模型出色地描述了系统在任意(l_{a})值以及(i = 1)、(2)和(3)时的统计行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验