Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France.
Phys Rev E. 2017 Jul;96(1-1):012416. doi: 10.1103/PhysRevE.96.012416. Epub 2017 Jul 31.
We theoretically investigate the dynamics of a floating lipid bilayer membrane coupled with a two-dimensional cytoskeleton network, taking into account explicitly the intermonolayer friction, the discrete lattice structure of the cytoskeleton, and its prestress. The lattice structure breaks lateral continuous translational symmetry and couples Fourier modes with different wave vectors. It is shown that within a short time interval a long-wavelength deformation excites a collection of modes with wavelengths shorter than the lattice spacing. These modes relax slowly with a common renormalized rate originating from the long-wavelength mode. As a result, and because of the prestress, the slowest relaxation is governed by the intermonolayer friction. Conversely, and most interestingly, forces applied at the scale of the cytoskeleton for a sufficiently long time can cooperatively excite large-scale modes.
我们从理论上研究了与二维细胞骨架网络耦合的浮动脂质双层膜的动力学,其中明确考虑了层间摩擦、细胞骨架的离散晶格结构及其预应力。晶格结构打破了横向连续平移对称性,并将具有不同波矢的傅里叶模式耦合在一起。结果表明,在短时间间隔内,长波长变形会激发一系列波长短于晶格间距的模式。这些模式以共同的、源自长波长模式的正则化速率缓慢松弛。因此,由于预应力的存在,最慢的松弛由层间摩擦控制。相反,最有趣的是,在细胞骨架尺度上施加足够长时间的力可以协同激发大尺度模式。